Refactorings
in Large
Software Projects

How to Successfully Execute Complex
Restructurings

Martin Lippert: lippert@acm.org
Stefan Roock: stefan@stefanroock.de

Date: 11/01/2004

1 Introduction

Once software developers believed it was possible to create the techni-
cal software design for a comprehensive system completely, correctly
and free of contradictions right at the beginning of a project. Many
projects proved though that this ideal approach can hardly be realized.
More often it causes significant problems.

A typical example of this fact are requirements that were either
unknown or not taken into consideration at the beginning of a project
and thus were not integrated in the original system design. Later on,
integration of these disregarded requirements into the project will be
much more difficult. If the developers are lucky, the requirements will
seamlessly fit into the existing system. However, this is rarely the case.
So-called ‘work-arounds’ are needed. These enable developers to meet
the requirements within the system, even though the actual software
design is not suitable for such a method.

One problem of these work-arounds is that they cause a gradual
degeneration of the system design that leads to a loss of structure. The
more work-arounds are built into the system, the more difficult it
becomes to recognize and apply the original software design. Often
developers describe such a system as ‘historically grown.’

Today, many development methods have a different approach to soft-
ware design. Especially agile development methods — most prominently
extreme programming — no longer treat software design as a clearly
and rigidly defined constant that is defined at the beginning of a devel-
opment project. Instead they assume that a software design emerges
step by step during the development process. If it is continuously
adapted and improved to meet present requirements, it is called emer-
gent design. Design improvements become established as an important
and independent activity during development and evolve into an inte-
gral part of this process. This activity is called refactoring.

Big Upfront Design

Loss of Structure

[

1 Introduction

Refactoring

Refactoring

Catalogues

First of all, refactoring means changing the internal structure of a
software to make it easier to read and modify without altering its
observable behavior. Besides acknowledging this rather technical defi-
nition, many developers also associate a process-related aspect and a
certain attitude with the refactoring term. In the context of extreme
programming, refactoring means first and foremost an ongoing and
repeated reflection about the software’s structure and improving it in
small increments.

In his book on refactoring (see [Fowler 99]), Martin Fowler gives
much advice on how refactorings can be accomplished. In this book he
refers to very basic modifications of an object-oriented system, like,
for example, ‘Rename Method’ or ‘Encapsulate Field.” For each of
these very small refactorings he describes — besides other aspects — also
the ‘mechanics’ of a refactoring. The mechanics of a refactoring
describe very small steps neccessary to perform the refactoring. Small
increments ensure that the system remains operable at any given time.
This procedure reduces the risk of introducing errors, created by
unwanted side-effects, into the software during refactoring. In addi-
tion to the book, Martin Fowler’s refactoring homepage provides a
comprehensive list of refactorings.

Based on the refactorings depicted by Martin Fowler, Joshua
Kerievsky identified further refactorings focusing on design patterns.
These show how design patterns can be introduced to an existing sys-
tem (or separated and removed from it), e.g. ‘Introduce Observer’ or
‘Replace Constructor with Factory.” Kerievsky provides depictions of
‘mechanics’ similar to those of Fowler.

The descriptions of concrete refactorings, such as ‘Rename
Method’ or ‘Introduce Observer’ are very valuable for developers,
because they demonstrate when and how such a refactoring can be
accomplished. Today, many development environments support devel-
opers quite efficiently during small refactorings.

1.1 Architecture Smells

Refactorings are often executed as a response to code smells. A certain
portion of the source code ‘smells like problems.” This is, for example,
the case if the same code section occurs more than once in the system.

Besides smells on the code level, smells can also be identified on
the architecture level, e.g. if the defined interface of a subsystem has
been circumvented. We will provide a catalogue of architecture smells;
some of which call for larger restructuring measures.

1 Introduction

1.2 Large Refactorings

Theoretically it is thinkable to continuously provide an optimal system
structure via small refactorings, but in practice, when dealing with
complex projects, this is not realistic. Even projects involving skilled
developers with a lot of know-how occasionally require larger restruc-
turing measures of the system — large refactorings. Ron Jeffries’ expe-
riences confirm this observation:

“QOur feeling is that if we could stick to our XP rules, we wouldn’t
need special taxes or special times to clean things up. But realistically,
can you play our best game day in and day out?”!

In his book, Fowler also explains the necessity of large refactor-
ings, called big refactorings by him and Kent Beck. Various examples
for such big refactorings can be found in his book as well as on his
refactoring website (http://www.refactoring.com/rejectedExam-
ple.pdf, Chapter 15: A Lon-ger Example). In many object-oriented
development projects it poses a big challenge to handle these large
refactorings.

Large refactorings often take longer than a day and change signif-
icant parts of a system. These properties of large refactorings create a
number of problems that the developers will have to deal with. Among
others, we observed the following problems:

Developers ‘lose track’ of large refactorings, because they are cre-
ated over a long period, and this process is frequently interrupted.
They remain incomplete. As a consequence, the software’s struc-
ture is in worse shape than before the refactoring.

If a refactoring influences large parts of the system, a high demand
for merges is often the result. This situation occurs when a refac-
toring is supported by an IDE and many parts of the system are
altered at once; or when a big refactoring is not broken down into
smaller increments. Such high demand for merges quickly discour-
ages the developers’ use of large refactorings. Thus much-needed
design modifications will not be made.

In many cases it is very difficult to foresee the consequences of sin-
gle steps of large refactorings. Frequently during the execution of a
large refactoring developers realize that the separate increments
cannot be carried out according as planned. There is still no easy-
to-handle means for dealing with such necessary changes of proce-
dure.

Because of the previously described difficulties, often large refac-
torings will not take place parallel to the normal system develop-

1. http://c2.com/cgi/wiki?TechnicalDebt

1 Introduction

ment. Instead, the team puts the system’s development process on
hold for a certain period to solely focus on the large refactoring.
This method of handling large refactorings does actually have
more in common with reengineering than with refactoring. Also,
many projects do not allow for temporary interruptions of devel-
opment processes.

These are the problems we wish to discuss in the next chapters. The
following questions will be at the center of our attention:

How can large refactorings be broken down into smaller incre-
ments? Can large refactorings be assembled from small refactor-
ings?

How can large refactorings be planned? How can existing refactor-
ing plans be adapted when it becomes clear that they cannot be
realized as planned? How can one obtain undo-functionality for
large refactorings, also during the actual refactoring process?

How long can/may large refactorings take? How can I proceed to
further develop (to add functionalities to) the system during the
execution of a large refactoring? How can one make sure that the
development process does not counteract the refactorings?

How can plans for large refactorings be integrated in the develop-
ment process? What type of development process is suitable here?
Which prerequisites must the development process meet? How
can/must/ should I document/communicate the present stage of a
large refactoring?

1.3 Refactoring and Databases

Today, there is hardly an application system in existence that works
without a (most common: relational) database which stores the objects
of an application. If the storage structure of a class or the interaction
of classes within the system is changed, this often means the database
structures as well as data present in the database need to be accommo-
dated too. Modifications of the database structure and the stored data
have the reputation of being a complex and tedious task.

Many small or large refactorings can lead to frequent modifica-
tions of the system’s classes. Since we do not expect the design to be
established at the beginning of development, the database schema can-
not be laid out at the project start. On one hand this means that refac-
torings of the program code can affect the database structures. The
structures need to be refactored together with the code. On the other
hand it may be necessary to additionally enhance the database sche-
mata themselves and thus refactor them.

1 Introduction

In this book we will show how refactorings affect a system’s con-
nection with a database.

1.4 Refactoring and Published-APIs

Refactorings do not alter the observable behavior of a software. The
software is always treated as a whole. If, for example, we rename a
method in a Java system, all occurrences of the original name in that
system must be changed too.

Normally it is no problem to identify all references to a method
name in a system and to adjust them accordingly. Many development
environments will do this automatically. The simple renaming of a
method will become difficult though if a system cannot be considered
as a whole. Typically this is the case when a system provides an API
that is also used by other systems. Such an API is also called a ‘pub-
lished API’ as opposed to a ‘public APIL.’

If a method, which is externally visible outside of a system’s pub-
lished API, is renamed, the IDE or the developer cannot adapt all exist-
ing references for this method, because a number of these references
will lie within those systems that build on the published API.

As we can see, published APIs constitute a problem for an aggres-
sive refactoring approach. In many cases this means that a modifica-
tion of published APIs will be completely prohibited (or only be
allowed to a very limited extent). As a result, not all refactorings of a
system can be carried out, since some of them would alter the pub-
lished API.

In this book we will address these problems and describe methods
that will allow developers to integrate published APIs in their refactor-
ings. At the same time we will aim at permitting merciless refactoring,
even if this affects published APIs.

1.5 Reading Tips

Chapter 2 provides a brief introduction to the refactoring topic. Those
readers who already have some practical experience with refactorings
can skip this chapter.

Chapters 3 and 4 should be considered and read as a unit. They
constitute the book’s core.

Chapters 5, 6 and 7 can be read independently from each other.
Developers who have experience working on large refactorings in
projects will understand chapters 5 and 6 without having read chap-
ters 2 to 4.

1 Introduction

It is recommended that you read chapter 3 before you start reading
chapter 7.

1.6 For Whom Was this Book Written?

This book primarily targets developers who have had some first expe-
riences with refactorings and are familiar with the concepts Martin
Fowler presents in his book. For all others there is a brief introduction
to the topic at the opening of the book.

1.7 The Background of this Book

The book conveys experiences with specific refactoring situations and
offers readers a variety of tips as well as assistance for how to use these
refactorings in their own development projects.

The book is in part based on our own development project experi-
ences, but also to a large extent on discussions with other developers,
which took place on mailing lists, but also at conferences or work-
shops

1.8 Acknowledgements

Repeatedly we discussed our problems and insights with other people
and tested them in projects. Therefore we would like to thank all those
who supported us, who participated in discussions and provided valu-
able ideas and suggestions. Our special thanks go to:

The employees and partners of its-wps GmbH for their committed
collaboration on a number of projects.

Walter Bischofberger and Henning Wolf, whose work with the
Sotograph generated important input for the chapter on architec-
ture smells. They also read early texts for this book and gave us
much appreciated feedback.

Marcel Bennicke has analyzed Eclipse with the Sotograph and
allowed us to publish the results. You will find them in the chapter
on architecture smells.

The participants of the workshop on Large Refactorings at the OT
2003 conference. During our discussion, they relayed important
and very interesting experiences, which further motivated us to
research this topic.

1 Introduction

A number of authors have contributed their own articles to this book:
Walter Bischofberger, Berrin Ileri, Dierk Konig, Klaus Marquardt, Jens
Uwe Pipka, Markus Volter and Henning Wolf.

We would like to thank the following persons (in alphabetical
order) for their input regarding earlier drafts of this book as well as for
their constructive criticism: Walter Bischofberger, Christoph Kogl,
Claus Lewerentz, Klaus Marquardt, Torsten Mumme, Jens Uwe
Pipka, Joachim Sauer, Bruno Schaeffer, Schmolitzky, Kurt Schneider,
Marco Schulz and Robert Wenner.

1.9 References

[Brant & Roberts] John Brant & Don Roberts: Smalltalk Refactoring
Browser. http://st-www.cs.uiuc.edu/~brant/RefactoringBrowser.

The first tool for the support of refactorings. It enabled developers
to realize many automated refactorings in Smalltalk and served as
a blueprint for many integrated development environments where
refactoring-support was pivotal.

[Fowler 99] Martin Fowler: Refactoring — Improving the Design of
Existing Code, Addison-Wesley, 1999.

The standard work in refactoring. It covers the fundamental refac-
toring methods and is a standard tool for every developer.

[Kerievsky 04] Joshua Kerievsky: Refactoring to Paiterns, Addison-
Wesley Signature Series, 2004.

In this book Joshua Kerievsky addresses the question in how many
steps patterns can be inserted in an OO system. The book is a con-
sequent continuation of [Fowler 99].

[Opdyke 92] William F. Opdyke: Refactoring Object-Oriented Frame-
works, Ph.D. thesis, University of Illinois at Urbana-Champaign,
1992.

The first comprehensive work dealing with refactoring. It focuses
on refactoring to push the development of frameworks.

[Refactoring 04] http://www.refactoring.com, 2004.

A site created by Martin Fowler that offers a collection of refactor-
ings. Here, you will also find the refactorings from [Fowler 99].

[Roberts 99] Donald Bradley Roberts: Practical Analysis for Refactor-
ing, Ph.D. thesis, University of Illinois at Urbana-Champaign,
1999.

[0

1 Introduction

This work is about the practical application of refactorings and
analyzes how refactorings can be automated through the use of
appropriate development tools. The implementation of the Small-
talk Refactoring Browser constitutes the basis of this work.

[Wake 03] William C. Wake: Refactoring Workbook, Addison-Wesley,
2003.

This book contains many practical tips how refactorings can be
handled. It can also be used as a workbook for simple refactoring.

R

2 Refactoring - An Overview

This chapter provides an overview of the refactoring topic. To this
end, we will first address the basic idea behind agile development
methods, the idea that software is designed in a stepwise process
(Emergent Design). This view is in opposition to the classic demand to
create the entire software design prior to programming (Big Design
Upfront).

Refactoring is the main instrument used in a step-by-step design
process. A brief introduction of the basics will deal with the questions
of when and how refactorings should be carried out. Then we will pro-
ceed to look at the relationship of refactorings and tests and discuss
how modern refactoring tools are changing the present refactoring
practice.

2.1 Emergent Design

The classic approach to software design is to come up with a complete
design which will then be implemented. However, in the past years it
became clear that this proceeding is rarely feasible. The design of a
software must be repeatedly adapted and improved during develop-
ment. Otherwise the software system will age, making it increasingly
difficult to realize modifications. At some point, no developer will dare
change the running system.

But if developers adapt the system design to meet current software
requirements, the ageing process can be stopped and even reversed. In
time, the software design can be improved.

2.1.1 Developing Software Is a Learning Process

For modern, evolutionary and iterative development processes, devel-
opers assume that software development is a learning process.

2

2 Refactoring - An Overview

Whereas research results in this field strongly emphasize that it is a
learning process for all those involved in a project, we will focus on the
system’s developers here.

The longer a project progresses, the more developers will learn
about its requirements and the suitable software design. While some
design choices which have been made in the course of the project will
prove beneficial and correct, others will turn out to be wrong or awk-
ward, the reason being that there is no such thing as a universal or best
design for a software.

During the past few years, new approaches in the context of
object-orientation were researched as well, and new findings were
made regarding how certain design problems can be solved elegantly.
At the same time, a software design is always created for a specific
application type; depending on both the context in which the applica-
tion is set and on the tasks it shall fulfill. If these factors change in the
course of a project (and for evolutionary and iterative development
processes it is assumed they do), the design must inevitably be adapted.

The opinion regarding software design and design modifications
have changed due to these findings: Design changes are no longer con-
sidered a necessary evil or proof of mistakes; they merely document
that software is able to meet the demands of changed prerequisites and
will do so.

2.1.2 No Design, Simple Design, Emergent Design

If you consequently follow this train of thought, this implies that the
developers don’t need to present a precise idea of the design for the
whole application at the beginning of a development project. Instead
they should draft a rough design for the entire system, and a detailed
design for the portion of the system which is currently in development.
They should always make design adjustments and thus improve it. The
application’s design will thus evolve gradually.

One important prerequisite for an emerging design is that it is con-
tinuously adapted to the changing conditions. Developers should not
ignore recognized weaknesses in the system’s design, i.e. code smells.
The rule is: the longer a smell exists in the system, the more difficult it
will eventually become to eliminate. In a worst-case scenario this could
mean that the developers do not refactor at all during development,
but execute a redesign of the system at the end of a release cycle
instead. With the ongoing refactoring of the source code, we choose to
take the opposite route: refactoring and design will become parts of
the daily development work. This does not mean that less designing

2.2 What Does Refactoring Mean?

B

takes place. The efforts are merely distributed more evenly over the
whole period of the development process.

2.2 What Does Refactoring Mean?

Today refactoring is an integral part of agile development projects. It is
one of the tools a developer uses, just like a suitable programming lan-
guage or an integrated development environment.

Refactoring means improving the technological design of a soft-
ware without altering its observable behavior. The developers do not
add any new features during a refactoring, i.e. they don’t do any bug
fixes or change anything about the software which would be detected
by the software user. Instead, only the internal structure — the techno-
logical design of the software — is changed.

Creating a software design! is a challenging task. Besides compre-
hensive experience in software systems design, the developers first of
all need to know precisely the respective software system’s tasks and
requirements to create a good design. Often it is not feasible to deter-
mine all requirements in advance, because:

too much time passes before programming begins and the soft-
ware can be utilized.

the requirements are changing in the course of the project.
misunderstandings arise, which will only be recognized and
eliminated after the first couple of implementations.

In agile development processes the project participants even act on the
premise that the project requirements will change during each itera-
tion, that new ones will emerge and old ones might be eradicated alto-
gether. The developers are forced to adapt the software design again
and again — through refactorings. This is the only way to keep the soft-
ware modifiable — ‘soft’ indeed. One might say that the software’s
aging is thus prevented.

2.2.1 AnExample

An example? shall illustrate the underlying idea of the refactoring
term. We developed a class Movie for a video store’s rental system:

1. Design refers here exclusively to the software-technological design of a soft-
ware, that is, its inner structure. It does not refer to the visual design of the
user interface.

2. This example is taken from [Westphal 04].

Agile Methods and
Refactoring

e

2 Refactoring - An Overview

public class Movie {
static final double BASE PRICE = 2.00; // Euro
static final double PRICE PER DAY = 1.75; // Euro
static final int DAYS DISCOUNTED = 2;

public static double getCharge (int daysRented) {
double result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
result += (daysRented - DAYS DISCOUNTED) *
PRICE PER DAY;
}

return result;

}

Because there are various places in the system dealing with amounts,
these shall be calculated via a class of their own, labeled Euro, from
now on. We introduce this new class and replace the constants of the
class Movie.

public class Movie {
static final Euro BASE PRICE = new Euro(2.00);
static final Euro PRICE PER DAY = new Euro(l1.75);
static final int DAYS DISCOUNTED = 2;

public static double getCharge (int daysRented) {
Euro result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
int additionalDays = daysRented - DAYS DISCOUNTED;
result = result.plus(
PRICE_PER DAY.times (additionalDays));
}
return result.getAmount();
}
}

Therefore, in the beginning, the new class Euro will only be used in the
internal implementation of the class Movie. Consequently Movie shall
not give out the amount as double, but directly as Euro:

public class Movie {
static final Euro BASE PRICE = new Euro (2.00) ;
static final Euro PRICE PER DAY = new Euro(l1.75);
static final int DAYS DISCOUNTED = 2;

public static Euro getCharge (int daysRented) {
Euro result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
int additionalDays = daysRented - DAYS DISCOUNTED;
result = result.plus(
PRICE PER DAY.times (additionalDays)) ;
}

return result;

2.2 What Does Refactoring Mean?

5]

}

Unfortunately this modification leads to compile errors, because the
clients of the Mowie class for getCharge will continue to expect the
return type double. Within a large system, this can create of hundreds
or even thousands of compile errors at once. In order to make the
refactoring process as pain- and risk-free as possible, it should be real-
ized in small increments

Thus we will make sure that our changes of the class Movie will be
carried out without rendering all client classes invalid. An often used
method to accomplish this is the duplication of methods:

public class Movie {
static final Euro BASE PRICE = new Euro(2.00);
static final Euro PRICE PER DAY = new Euro(l.75);
static final int DAYS DISCOUNTED = 2;

public static Euro getEuroCharge (int daysRented) {
Euro result = BASE PRICE;
if (daysRented > DAYS DISCOUNTED) {
int additionalDays = daysRented - DAYS DISCOUNTED;
result = result.plus(
PRICE PER DAY.times (additionalDays));
}

return result;

}

/ * %
* Qdeprecated
*/
public static double getCharge (int daysRented) {
return getEuroCharge (daysRented) .getAmount () ;
}
}
Now we got two methods with different names and a different return
type that almost serve the same purpose. The compiler relays warnings
to all clients that use getCharge, providing us with a to-do list for the
conversion of the clients. Once all clients are using getEuroCharge,
getCharge can be deleted from Movie.
If necessary, the method getEuroCharge can subsequently be
renamed getCharge, either via method duplication or — much easier —
with the aid of the development environment’s refactoring support.

2.2.2 Refactoring Categories

Refactorings can concern various parts of a software system. In his
book Refactorings, Fowler discriminates the following categories:

e

2 Refactoring - An Overview

Refactorings Do Not
Change a Software’s
Observable Behavior

1. Composing Methods: These refactorings serve restructurings
on the method-level. Examples of refactorings from this group
are: Extract Method, Inline Temp or Replace Temp with
Query.

2. Moving Features Between Objects: These refactorings support
the moving of methods and fields between classes. Among
them, refactorings like Move Method, Extract Class or Re-
move Middle Man can be found.

3. Organizing Data: These refactorings restructure the data orga-
nization. Examples are: Self Encapsulate Field, Replace Type
Code with Class or Replace Array with Object.

4. Simplifying Conditional Expressions: These refactorings sim-
plify conditional expressions, such as Introduce Null Object or
Decompose Conditional.

5. Making Method Calls Simpler: These refactorings simplify
method calls, such as Rename Method, Add Parameter or Re-
place Error Code with Exception.

6. Dealing with Generalization: These refactorings help to orga-
nize inheritance hierarchies, such as Pull Up Field, Extract In-
terface or Form Template Method.

For many refactorings, a reverse refactoring exists. For instance, a new
method can be extracted if an existing method seems to be too long
(Extract Method). On the other hand, a method can be dissolved if it
has become obsolete (Inline Method). A similar strategy exists on the
class level (Extract Class, Inline Class) or inside inheritance hierarchies
(Pull Up Field/Method, Push Down Field/Method).

2.2.3 Observable Behavior

If developers carry out a refactoring and thus change the software’s
structure, the software’s observable behavior should not change — one
could also say that refactorings do alter a program’s syntax, but not its
semantics.

When developers carry out a refactoring and thus modify a soft-
ware’s structure, its observable behavior should not change. Opinions
regarding interpretation of the term ‘observable’ vary though. Strictly
speaking, each single refactoring influences a system’s dynamic behav-
ior, but usually these changes are merely marginal. The difference
would be measurable, but normally go unnoticed by the system user. A
run-time change in the tenth-of-a-second range would be considered
‘not observable’ in most applications.

2.2 What Does Refactoring Mean?

7]

The question what exactly observable behavior is cannot be
answered independently from the system and its application context.
Pragmatically, one can settle for the definition that observable behav-
ior has changed when the system user notices it.

2.24 When s a Refactoring Carried Out?

Refactorings are no end in itself, but always aim at eliminating a weak-
ness in design. Weaknesses are present when the existing system struc-
ture hampers or even prevents modifications. Such weaknesses are also
referred to as bad smelling code — so-called code smells. Bad smells
often emerge when the so-called Once and Only Once Principle® has
been disregarded: each design choice shall be expressed exactly in one
place in the system.

A code smell can either be a long and complex method in a class, a
cyclical uses relation between two classes, or a parallel inheritance
hierarchy. For a more comprehensive listing and depiction of common
bad smells, see [Fowler 99].

Often developers will encounter code smells during their daily
work — more specifically whenever the system refuses to accept a mod-
ification.

Most code smells can be cured with the appropriate refactoring. A
method that is too long, for instance, can be broken down into many
smaller methods with the refactoring Extract Method.

When developers detect a code smell, it can be eliminated with the
aid of a refactoring at various stages of the project:

Before implementing a new feature, the developers analyze the
code and debate how this new feature can be realized. It is possible
that the new feature will integrate badly with the existing design,
or not at all. In this case, in a first step refactoring must be used to
rearrange the design to fit the new feature, followed by the devel-
opers’ incorporation of it in the software.

After a new feature has been implemented, the developers notice
that the design does no longer meet the software’s requirements.
Using suitable refactorings, the developers can continue to improve
the software design until it meets the required functional range.

In many cases both methods are used, so that the following program-
ming mini-cycle is created:

3. Here is a corresponding joke about that principle: The Once and Only Once
Principle contradicts itself because the word ‘Once’ occurs twice.

s

2 Refactoring - An Overview

1. Cleaning up the code based on the new requirements — with re-
factorings.

2. Implementation of the changes. If this turns out to be a com-
plex task, refactorings will be used during implementation.

3. Cleaning up the new code — of course with refactorings.

2.2,5 How s aRefactoring Carried Out?

Refactorings will alter an executable software. This always implies a
risk, because there is the chance that new errors will find their way
into the software. Therefore two axioms, which should be observed
for refactorings, have been established:

Refactorings are always to be broken down into small iterations
that constitute complete and testable entities.

Refactorings must only take place after the required automated
unit or acceptance tests have been conducted. With these tests
developers check if the software displays the same behavior as it
did prior to refactoring.

While we are going to discuss the second axiom in greater detail later
in this chapter, we will now deal with the first axiom, which states that
refactorings should be broken down into small iterations.

Newcomers to refactorings show a tendency to bundle many small
restructurings and implement them in a single, big step. Instead of dis-
secting only one method at a time, a superclass is created simulta-
neously, some parameters are complemented, a float value is packed
into a value object, and two other classes are combined. Quite fre-
quently developers get lost in the growing jungle of structural changes.
The result is a system that will not be executable for a long period and
which is difficult to get running again. Often new errors will sneak
into the software. Due to the number of parallel introduced modifica-
tions, they are easily overlooked.

But if a refactoring is executed step by step, significantly smaller
changes of the system can be committed back to the code repository,
each of which contributes to a fully functional system. The risk of
introducing new errors into the software will clearly be reduced,
because the single alterations are straightforward and separately test-
able. Also, the risk of merge conflicts, because other developers have
changed the same classes, is reduced.

Even a seemingly simple refactoring has the potential of influenc-
ing substantial parts of a system. If, for instance, the developers
rename a method, one of the consequences might be that substantial
parts of the program can no longer be compiled. Even an apparently

2.2 What Does Refactoring Mean?

9]

simple refactoring can lead to changes in many parts of a system. If the
refactoring is carried out in one big step, the developers will spend a
relatively long time finishing it — at least as long as they don’t have a
tool to support them. Also, the danger of making mistakes increases.

It is not always easy to break down a refactoring into small incre-
ments. At first sight, the renaming of a method seems to resist decon-
struction. Once the method has been renamed, all references must be
changed as well. In his book, Martin Fowler assigns so-called
‘mechanics’ to each refactoring (see [Fowler99]). They describe what
steps are to be taken to execute a refactoring. For example, for renam-
ing a method, the developer could proceed as follows™:

1. Create a new method with a new name and copy the imple-
mentation from the old method into the new method.

2. Compile.

3. Change the old method’s implementation so that it calls the
new method.

4. Compile and test.

5. Find all references to the old method and step by step change
them into the new method. Compile and test after each modifi-
cation.

6. Remove the old method.

7. Compile and test the system.

These mechanics show that even the renaming of a method can be car-
ried out in at least four separate steps. After each step, the system can
be compiled and tested. Even if the method is used in many places in
the system, the developers can always check in modified versions of
the source code into the shared repository. The step-by-step procedure
as well as the tests guarantee that the system will remain functional at
any given time.

Although today the renaming of a method is done automatically
by many development environments, and thus is a job that a developer
can finish within a few seconds (we will address this issue in a later sec-
tion of this chapter), this example shows that in principle it is possible
and useful to break down refactorings into many small increments.

Martin Fowler’s book on refactoring provides the respective
mechanics for the refactorings listed in his book. On one hand they
can serve as instructions for refactorings, on the other hand they offer
ideas for how refactorings can basically be broken down into small
increments. Practice has proven that all refactorings can be treated in
this way, even if it seems impossible at first sight.

4. This is a slightly simplified version of the mechanics used by [Fowler99].

20

2 Refactoring - An Overview

2.2.6 “Detours”

Breaking down refactorings into small increments is no trivial task.
Let’s have another look at the example from the previous section: The
old method continues to exist, while the new method has already been
implemented. Only when all references to the old method have been
replaced by references to the new method, the old method will be
removed. In this way the old method serves as kind of detour. The
entire system stays functional, although parts of the code have yet not
been adapted for the new method.

Such detours are a typical characteristic of mechanics for refactor-
ings. The comparison with road construction is not too far-fetched:
Here too, detours will be created to enable traffic to flow in spite of the
ongoing construction work.

For the example above this means that the old method does no
longer contain implementations of its own, but calls the method with
the new name instead.

During a refactoring, detours will temporarily make the system
more complex. In the example above two methods for the same task
exist simultaneously during the refactoring process. Only after all ref-
erences to the old method have been modified, the old method will be
deleted and the desired structure has been realized. Therefore it is of
utmost importance to complete refactorings and conduct only a few
refactorings at the same time. If these rules are not observed, the sys-
tem’s structure will deteriorate due to the many remaining detours.

2.2.,7 Refactoring Catalogues

Like for design patterns, for refactorings the attempt was made to find
and write down universal descriptions and instructions, which eventu-
ally became refactoring catalogues. These catalogues describe a num-
ber of essential refactorings, each with a brief explanation of when the
respective refactoring should be used, and how it can be realized.

The standard catalogue for refactorings can be found in
[Fowler99]. This catalogue describes in detail seventy-two refactorings
for the restructuring of object-oriented constructs. Supplementing the
book, Martin Fowler has put up an online catalogue with an extended
list of refactorings on his refactoring website (http://www.refactor-
ing.com/).

While all the refactorings depicted by Martin Fowler in his book
focus on basic object-oriented concepts, Joshua Kerievsky has assem-
bled a catalogue of pattern-based refactorings (see [Kerievsky03]). The
refactorings in his catalogue are, for example, for adding an observer

2.3 TheRole of Tests

21]

pattern (Replace Hard-Coded Notifications with Observer) or a com-
posite (Replace Implicit Tree with Composite).

2.2.8 Practical Experience and Advice

Read Martin Fowler’s refactoring book completely and keep on
using it as a reference. It contains many tips and ideas, a compre-
hensive refactoring catalogue, and it shows how refactorings can
be broken down into small increments.

Be open to the practice of executing refactorings in small steps.
Admonish yourself again and again to follow the small steps.

Even if it does appear too difficult or not feasible at all to break
down each refactoring into small increments: Go ahead and try it!
If you fail to break down a refactoring, carry out a little review
afterwards. After refactoring you will know how you did it, which
will quite often make you realize how you could have broken it
down.

Practice proves that one can always come up with small steps. One
of the underlying ideas is to build a detour first and then tear up
the road. This also implies that in the beginning the system will
become a bit more complex. Therefore refactorings should always
be completed. Never let refactorings drag on over a long period.

2.3 The Role of Tests

Automated tests play a significant role in refactoring. They serve to
check again and again if the entire system works exactly how it did
before single steps of a refactoring or a complete refactoring have been
executed. This security measure ensures that developers run a much
lower risk of introducing new errors into the software.

Of course this only works as long as the refactoring does not alter
the interface of a class. As soon as the interface of a class is modified as
part of a refactoring, the tests need to be adapted to the modified inter-
face. This raises the question of how the tests can function as a safety
net if we have to manipulate them ourselves.

There are two different approaches of how to deal with tests dur-
ing a refactoring: either the developers conduct the actual refactoring
first and then customize the tests (Code-First Refactoring), or the tests
are modified prior to the actual refactoring process (Test-First Refac-
toring).

22~

2 Refactoring - An Overview

2.3.1 Code-First Refactoring

For code-driven refactoring, the developers will carry out the refactor-
ing and use the still unchanged tests as a safety net. In the course of the
refactoring the tests are customized to fit the new code structure.

For renaming methods this means: as long as the old method still
exists, old tests of this class can be carried out without requiring mod-
ifications. During the refactoring process the old test class can be fitted
to the new method. This must happen before the old method is deleted
from the class.

Detours are beneficial during test procedures: they ensure that one
can continue to use the old test classes, but latest when the detours
have been removed, the tests must be adapted to match the new struc-
ture as well.

2.3.2 Test-First Refactoring

Alternatively the fundamental idea behind test-driven development
can also be applied to refactoring.

In test-driven development the developers first write the test, fol-
lowed by implementation of the class, until the test turns out to be suc-
cessful. If we apply this idea to refactoring tasks, we will arrive at test-
first-refactoring: The developers will first change the tests and carry
out the refactoring afterwards. This will be done until the modified
tests are running successfully. Here the tests serve as a kind of ‘target’
for the refactoring.

Whereas developers will test a new or altered functionality during
‘normal’ test-driven development, followed by its implementation,
they’ll focus on the structure of the code during test-driven refactoring.
If, for example, a too long method shall be broken down, the test for
the new, extracted method will be implemented first. On this basis, the
developers will modify the original method and extract the new
method. The already modified test class enables them to immediately
test the old as well as the new method.

Test-driven refactoring has the same advantages we can also wit-
ness during test-driven programming: the new code structure is
designed and implemented with its exemplary use (for testing) in mind,
while for the new structure a test is readily available etc.

2.3.3 Practical Application: A Combination of Both Approaches

In practice, both approaches will rarely occur by themselves, i.e. iso-
lated. In most cases, developers will combine the two procedures.

2.3 TheRole of Tests

23]

For renaming methods, for instance, first a test for the new
method is implemented within the existing test. This is accomplished
by copying the test for the old method and changing the used method
accordingly. Afterwards, the new method can be added to the code,
and one can follow the mechanics described above. Finally the old
method is deleted together with the test for the old method.

Even if a refactoring is completely automated through its develop-
ment environment (e.g. Rename Method), both approaches will be
combined. The development environment makes sure that both tests
as well as tested code are modified simultaneously.

2.3.4 Dependent Classes

In both cases, the test classes of dependent classes function as an addi-
tional safety net.

Let’s have a look at the example of the renamed method: The
class’s clients will first call the old method. The clients’ test classes
indirectly check if the old method is still working. Step by step, all cli-
ents are adapted to the new method. Since these modifications only
affect the implementation details of the clients, the clients’ test classes
don’t have to be changed. They can also be used as a safeguard for the
clients’ modified versions. Thus the developers can automatically
check if they made a mistake when they manipulated the clients.

This procedure will only work though as long as the dependent
classes don’t use any Mock, Stub or Dummy objects. In that case, inte-
gration tests must be utilized.

2.3.5 Refactoring of Tests

Test classes too need to be refactored from time to time. They are
prone to the same code smells that we might ‘scent’ in the application’s
normal code. For ‘normal’ refactorings we used the test classes as
safety nets to prevent the introduction of any new errors into the soft-
ware. What can serve as our safety net though if we are going to refac-
tor the tests themselves? After all, here too, we can make mistakes.

The answer is simple: The class to be tested will serve as our safety
net. We proceed on the assumption that the test class did run success-
fully prior to refactoring. If a test within the test class fails after the test
class has been refactored, an error must have been made during refac-
toring (or we found a new error in the class to be tested).

In addition, we can use test coverage tools (e.g. [JCoverage 04],
[Clover 04]) to check test coverage before and after refactoring. How-
ever, it is only in part possible to let the test coverage tools check the

7

2 Refactoring - An Overview

same functionality after refactoring as before, and it requires a lot of
tweaking. This is because such testing simply isn’t the primary purpose
of test coverage tools.

2.4 Tools Support for Refactorings

Refactoring tasks can effectively be supported through the use of suit-
able refactoring tools. The first tool specifically for refactoring was the
Smalltalk Refactoring Browser, which was developed by John Brant
and Don Roberts at the University of Illinois at Urbana Champaign.
With this tool, many fundamental refactorings can be carried out
automatically.

The refactoring browser for Smalltalk (see Figure 2-1) offers the
option of renaming a class, for example. If the developer assigns a new
name to a class with the aid of this function, all references will be auto-
matically updated to match the new class name. The developer no
longer needs to manually update clients of the respective class. The
same can be done for renaming methods. The refactoring browser also
enables the extraction of a method. To achieve this, the developer only
needs to highlight the code section that shall be extracted and assign a
name to the extracted method. The code will then automatically be
copied into a new method with the assigned name and replaced by a
call in the original method. Also, the refactoring browser automati-
cally determines which parameters and return values are required by
the new method.’

5. The Smalltalk refactoring browser also supports a variety of other refactor-
ings. We will only introduce a few of them to illustrate the principal handling
of this tool.

2.4 Tools Support for Refactorings

~25]

jbrowse: - Smalllalk =[50 x]
Euftere EBrowse Category Clage Protocol Zelector Tool

initialize-raleasa *[zcdindes orTablaForin X
acceszing chieckDatanodelolurncwith
conneclion

LansDiatabasendax
LensDatabazeTable
LansDatabaseTablatolumn
LensTablekey

Lens-Privata-Object Managar
Lens-Private-Ouery Manager
Lens-Privata-Transparter
Lens-Privale-Applicatons-Sup
ens-Privaie-Tools- Suppor
Lens-Private-Tool s Browsing
|Lens-Privaie-Tools- Component]

Ecobul 01T - che: Finilti For
[# categoy O hwranchy || instanes Tl 7 | = | '

lype 3 n
creataTableFor: jype in: alensSession dafiniion

“Ldd {he tzhle for type in alensSession. W's OKf i aleady sxists.”

| definitiar | 3

definfion = WrisStream on: String new.

defaullTablatlameFor:
testing definaFomigkey=Forin
ke definaFnrnarpkdeyForin
e Tahlehamad:in

I

dafindion nextPuldll treate table ', 1ypa fable quaifiaddama |, [

dafinftion skip: -1.
dafintion nexiPul: §).
alenzEes=ion connection doCammantStang definition contents

The refactoring browser for Smalltalk has significantly changed the
thinking about and work with refactorings. In the meantime, many
integrated development environments have started to offer similar
functionalities. Especially current Java-IDEs, like Intelli] IDEA or
Eclipse (see Figure 2-2), offer powerful refactoring support. Their
implementations have long surpassed the original refactoring browser

for Smalltalk.

Refactor Mavigate Search Project Run ‘Window He
Lnda Ale+EhifEZ
Reda Alb+ShifE

Rename... Ale+shift+R
Move.., Ale+Shift+4
Change Method Signature. ..

Convert Anonymous Class to Mested...

Move Member Type ta Mew File. ..

Push Down...

Full Up. ..

Extract Intetface...

Generalize Type. ..

Use Supertype Where Possible, ..

Inline... Alt+5hift+1
Exbtact [Method. .. A+ ShifET
Extract Local Yariable. .. Ale+-shift+L

Extract Constant. ..

Introduce Parameter...,
Introduce Factory. ..

Converk Local Yariable ko Field. ..
Encapsulate Field. ..

Fig. 2-1
Smalltalk Refactoring
Browser

Fig. 2-2
The Refactoring
Menu of Eclipse

26

2 Refactoring - An Overview

It is interesting to observe how this tool support has changed the work
with refactorings. Renaming a class, an interface, or an operation in
the common IDEs is a matter of a few seconds. Only by pressing a cou-
ple of keys, the old name will be replaced in the entire system.

Tool support has advanced to the point of even correcting refer-
ences to the respective name in source code comments or other files
(such as XML files). However, this will only work with files that pos-
sess clearly defined semantics which are known to the refactoring tool.
For a refactoring tool this is the only way of finding out if, for
instance, a certain type is referenced or not. For JSP files (JavaServer
Pages), for example, this can be easily done, because the semantics of
the embedded source code are clearly defined. For a XML file it will be
more difficult: here the IDE can only conduct a text search to find out
if a certain type is referenced. If the type is not fully qualified (with
complete package identifier), the refactoring tool will soon announce
its defeat.

The number of supported refactorings in development environ-
ments grows with each new version. The current version of Eclipse
allows developers the extraction of interfaces. Here the IDE does not
only create the interface and lets the class implement it, moreover, all
clients of the class are analyzed, and type references to the class are
replaced by the interface where this is feasible.

Present research is one step ahead: researchers are trying to auto-
mate design pattern-based refactorings (see [Cinnéide 00]).

This shows that a growing number of and more complex refactor-
ing operations are supported by IDEs, making it easy for developers to
execute the desired refactorings. Refactoring is becoming a part of
their daily work with source code.

Today it is possible to execute the conversion of an expression into
a local variable in the source code with a single keystroke, using a
refactoring provided by the IDE (see Figure 2-3).

2.4 Tools Support for Refactorings

27]

Iy + Extract Local Yariable ﬁ

Vatiable name: | transfarmerClasshiame]

[¥ Replace all occurrences of the selected expression with references to the local variable

[™ Daclare the lacal vatisble as Final'

Signature Preview: String transformerlasshlame

Preview = | OF, I Cancel

. ecodelransformerservice ., clags . getliane [) |18
transformer3ervice = [BytecodeTransformer3ervice) context.get3ervice(servicel

2.4.1 Incremental Refactoring vs. Tools-supported Refactoring

A tool-based automation of refactorings seems to render the previ-
ously described mechanics and the step-by-step proceedings during
refactoring obsolete. As a matter of fact, it is no longer necessary to
rename a method in a series of single steps, because the IDE can
accomplish this completely in a few seconds. Nevertheless, the basic
idea behind incremental refactoring is not at all outdated.

There will always be refactorings that are either not supported by
an IDE or that cannot be supported by an IDE (see next section). In
these cases, it is still sensible to carry out refactorings step by step.
Here too, the examples in Fowler’s book can provide valuable advice
how one’s own refactoring can be broken down.

2.4.2 Limitations of Tools Support

Unfortunately refactoring tools have their limitations too. They can-
not support all possible refactorings. In this section, we will take a
brief look at some of these limitations and point to possible solutions:

Refactoring tools can only provide automated support for such
refactorings that can be generically described. This is the case with
most refactorings introduced in [Fowler99], but the developer still
has to manually combine several refactorings to form a composite
refactoring. Refactorings like Extract Hierarchy or Separate
Domain from Presentation cannot be executed automatically by
today’s software tools because they require too much context
information. For example, in the case of the Separate Domain
from Presentation refactoring, developers must decide which por-

Fig. 2-3
Refactoring “Extract
Local Variable” in

Eclipse

28

2 Refactoring - An Overview

tions of the code belong to the application’s domain model and
which ones to the presentation-specific part.

Refactoring tools rely on having the complete source code at their
disposal, which will potentially undergo change through the refac-
toring. Only then the refactoring can be executed safely. If, for
instance, a method that redefines a method from a library shall be
renamed, the redefined library method must be renamed too to
guarantee the same behavior. However, all popular refactoring
tools will alert developers to such situations instead of blindly
modifying the code. This problem does not only emerge when
external libraries are used, but also when development takes place
in different locations or when the system is developed in sub-
projects for one reason or another.

If the application itself possesses a published interface for other
systems, this interface can be changed with refactorings, but the
interface clients will need to be refactored as well. We will dedicate
an entire chapter labeled ‘API-Refactorings’ to this problem.

This problem does not only emerge when external libraries are
used, but also when development takes place in different locations
or when the system is developed in subprojects for one reason or
another.

A regular refactoring can alter an application’s source code. Persis-
tent data will usually not be included in such an automated refac-
toring. Therefore it must be manually adapted to the application’s
new version. This problem is known for relational database con-
nections as well as for purely object-oriented persistence mecha-
nisms.

If an object-oriented system uses a relational database, a mapping
of object-oriented elements to the relational elements of that data-
base is necessary. If a part of the object-oriented application is
refactored, this can affect mapping to the database. This problem
will also be discussed in a whole chapter.

2.5 Experiences and Recommendations

Tests and refactorings constitute an inseparable unit. Only suffi-
ciently automated tests guarantee the safe execution of a refactor-
ing.

If the interface of a class is changed in the course of a refactoring,
the corresponding test class must also be adapted. In this case it is
recommended that you first modify the test class and then proceed
with the refactoring step (test-first refactoring).

2.6 References 29|

A design can emerge and grow in the course of a project. A rough
outline of the architecture will often suffice in the beginning.
However, do not make the mistake of working without any idea of what
the architecture should look like — especially when you have either little
or no experience with refactorings in projects. Otherwise you risk fall-
ing back on hacking.

Refactorings are an essential part of software development. Only
continuous refactoring will help to change and improve the soft-
ware’s design during development.

Do not put off refactoring work. You can compare refactoring
work to taking out garbage. If you don’t regularly take out your
garbage, you’ll drown in it at some point.

Use the refactoring options offered by modern development envi-
ronments.

2.6 References

[Cinnéide 00] Mel O Cinnéide: Automated Application of Design Pat-
terns: A Refactoring Approach. Ph.D. Thesis, Trinity College, Dub-
lin, October 2000.

In bis Ph.D. thesis, Mel O Cinnéide elaborates on how many of the
well-known design patterns can be integrated in the code with
refactoring techniques. Other than Kerievsky, Cinnéide is working
on a tool-based approach that will enable the automated introduc-
tion of design patterns into the code.

[Clover 04] Clover: http://www.thecortex.net/clover

Clover is a commercial tool for measuring the test coverage of Java
programs.

[FIT 04] FIT: http://fit.c2.com

FIT is a tool for the conduction of automated acceptance tests (also
function tests). These tests are specified via HTML tables (e.g.
using tables with input values and expected output values for cer-
tain system functions) executed by a test runner. Using fixtures, the
test runner binds the application to be tested to the tables contain-
ing the tests. The test result documentation is then delivered in the
form of HTML pages.

[Fitnesse 04] Fitnesse: http://www.fitnesse.org

Fitnesse is based on [FIT 04] and does not only offer FIT, but also
a Wiki web that allows easier test specification and organization.

30

2 Refactoring - An Overview

[Fowler 99] Martin Fowler: Refactoring: Improving the Design of
Existing Code. Reading, Massachusetts, Addison-Wesley, 1999.

Not only does Fowler depict basic refactorings; be also introduces
the distinction between public and published interfaces.

[JCoverage 04] JCoverage: http://www.jcoverage.com/

JCouverage is a tool for measuring the test coverage of Java pro-
grams. It exists in two versions: an open source and a commercial
version.

[Kerievsky 03] Joshua Kerievsky: Refactoring to Patterns. To be pub-
lished. http://www.industriallogic.com/xp/refactoring/

In his refactoring-to-pattern catalogue, Joshua Kerievsky conse-
quently continues with Martin Fowler’s work and describes how a
number of popular design patterns can be treated during refactor-
ing. The catalogue contains instructions for introducing a specific
design pattern, but also a complementary refactoring for the
respective pattern’s removal.

[NoUnit 04] NoUnit: http://sourceforge.net/projects/nounit

NoUpnit is a tool for finding program sections that are not supposed
to be tested.

[Pipka 02] Jens-Uwe Pipka: Refactoring in a ,, Test First“ World. XP
2002. http://www.agilealliance.com/articles/articles/JensU-
wePipka--RefactoringinaTestFirstWorld.pdf

This article addresses the problem that test code is often changed
by refactorings, too, and therefore no longer applicable as a safety
net for refactorings. We suggest a refactoring procedure similar to
the test-first approach, i.e. to adapt the test first and then execute
the refactoring.

[Roberts et al. 04] Don Roberts, John Brant, and Ralph Johnson: A
Refactoring Tool for Smalltalk. Published in Theory and Practice of
Object Systems special issue on software reengineering.
http://st-www.cs.uiuc.edu/users/droberts/

A description of the Smalltalk refactoring browser.

[Westphal 04] Frank Westphal: Testgetriebene Entwicklung mit JUnit
und FIT. dpunkt Verlag. Publication scheduled for 2004.

Westphal explains test-driven procedures in software development.
Of course he also touches upon the issue of refactoring.

311

3 Architecture Smells

When experienced developers are looking at a system, they’ll very
soon develop a feel for its weaknesses. They will say that the system
smells; it possesses distinct smells, which point to conspicuous states in
the system. Whether these states really pose a problem or not must be
decided in each individual case. If we follow a smell and actually detect
a problem, we will solve it using refactorings.

In his book about refactorings (see [Fowler 99]), Martin Fowler
describes smells that can be cured with small refactorings. Examples of
causes for these smells are too long methods, long case statements etc.

Besides these code smells, architecture smells can frequently be
identified. These will require large refactorings. The following sections
will describe occurrences of architecture smells that we repeatedly
encountered. As with code smells, an architecture smell does not
always inevitably indicate there is a problem, but architecture smells
point to places in the system’s architecture that should be further ana-
lyzed. When we conduct architecture reviews, we refer to architecture
smells for guidance.

Architecture smells can be found on various levels:

In uses- and inheritance relations between classes: These smells
refer to the elemental relations between single classes.

In and between packages: For many programming languages, con-
cepts for grouping related classes exist, for example the package
concept in Java. In and between such packages architecture smells
can also occur. We are going to address them here.

In and between subsystems: Packages alone do not constitute a suf-
ficient concept for the structuring of larger systems, which is why
packages are often bundled in so-called subsystems. In and
between such subsystems, architecture smells can occur.

In and between layers: Besides subsystems, so-called layers are
often introduced into larger systems. They also serve to structure

32~

3 Architecture Smells

the system. Often these layers will serve to separate the UI model
from the domain model. We have identified a number of architec-
ture smells that can emerge i1 as well as between layers.

The larger a system is, the more important are analyses of subsystems
and layers. In small systems, the interesting aspects of their architec-
ture express themselves in packages and classes, whereas subsystems
and layers often don’t exist at all. Nevertheless, smaller systems too
will become more clearly defined when they are divided into sub-
systems.

If the system is big enough to consist of a significant number of
subsystems, it is more important to ascertain that the relations
between the subsystems are clean than to ensure that the subsystems
possess an optimal internal structure. If a chaotic structure exists
within a subsystem, it will quasi be ‘quarantined’ by clear structuring
of the subsystems — chaos cannot spread to the remaining parts of the
system. Later on, the chaotic subsystem can be isolated from the rest of
the system and either be revised or completely newly developed.

Of course it is also important to select the correct size for each
level. Classes, packages, subsystems and layers should not contain too
many, but neither too few elements. Figure 3-1 illustrates the resulting
tension between understandability and reusability. The more compo-
nents are part of a layer, the more of them can be reused by the layers
above them. It should not go unmentioned though that the layer will
become more difficult to understand as its number of components
increases.

3 Architecture Smells

~33]

Number of Elements

Figure 3-1 obviously simplifies the relationship between understand-
ability and reusability. In practice, the optimum between both values
does not always meet at an intersection. Instead, there’s rather a large
‘middle zone’. Moreover, it might happen that reusability deteriorates
along with decreasing understandability, because everybody avoids
using items that are complicated or even not understandable at all.

It is not possible to provide general numbers, but there is a rule of
thumb that can somewhat serve as a guideline: If an element consists
of more than 30 subelements, it is highly probable that there is a seri-
ous problem:

a) Methods should not have more than an average of 30 code
lines (not counting line spaces and comments).

b) A class should contain an average of less than 30 methods, re-
sulting in up to 900 lines of code.

¢) A package shouldn’t contain more than 30 classes, thus com-
prising up to 27,000 code lines.

d) Subsystems with more than 30 packages should be avoided.
Such a subsystem would count up to 900 classes with up to
810,000 lines of code.

e) A system with 30 subsystems would thus possess 27,000
classes and 24.3 million code lines.

Fig. 3-1
Tension between

Elements

e

3 Architecture Smells

f)

If the system is divided in 3 to 10 layers, each layer comprises 3
to 10 subsystems.

In view of these numbers it soon becomes clear that one can carefully
approach the upper limit of 30. If this is done consistently for each
level though, the cumulative effect will lead to serious problems, as
clarity might be impaired. Therefore, in practice the average values
should stay visibly below the upper limit of 30.

The development environment Eclipse provides an apt example:!

1.

a)

b)

Eclipse counts about 1.5 million lines of source code including
line spaces and comments; without line spaces and comments
it has about 730,000 lines of source code.

This source code is distributed over circa 460 packages, circa
12,400 classes and interfaces, plus approximately 89,500
methods.

This means that a method has an average of about 8 lines of
source code — without comments and line spaces.

Classes and interfaces have an average of circa 7.2 methods.
Common packages contain about 27 classes and interfaces.
The Eclipse plug-ins can be viewed as subsystems. Conse-
quently, Eclipse consists of 48 subsystems. A subsystem com-
prises an average of 9.6 packages plus 260 interfaces and
classes.

Eclipse itself does not define layers. If one analyzes the static
dependencies of subsystems, a layering consisting of ten layers
can be identified (see Figure 3-2, provided by Marcel Ben-
nicke), with approximately five subsystems assigned to one
layer. The illustration shows that extreme variances occur:
from layers with only one subsystem to layers with sixteen sub-
systems everything will be assembled here.

These numbers refer to Eclipse Version 2.1 with the plug-ins that are part of
the software’s standard package. We are grateful to Marcel Bennicke, who
generously provided them.

3.1 Design Principles

~35]

.

Figure 3-3 gives an overview of architecture smells in this chapter.

/7 visible " unused /~ cycles between
| depfand::cy __ packages / . Packages J
N_gmpn__/ / tree-lke e/ toolarge Y\ o —
" eycles between / (Tosml \ _ packages / [packages too deep
i \ graphs 7 _packages - or nestin,
o clsses) /~ packages \ unbalanoegd
— _unclearty named / . /
n(unused classasju
_ e - -
1 g i J I/ b AP \I
N /
subsystem
— - cycles between ™
(. pal_allel \I toosmall (ubsystems)
_hierarchies /" listlike ™ (subsystem A.Pl) (——)
[| inheritance \ too large
inheritance ™, A hierarcl yaaTT A
pkwwhym . hy --/ __\ o P;rge > i no subsystems D)
pelymorphic { type queries) - . —

\._assignments

l/ hierarchy \I /7 subclasses ™ / inheritance between \ ~Upward references)

\ | without | protocol-oriented in lavers
N teodeep /L redefintions layers o~ ¥

' ™ /raferenr.es beiween\
I too layer }
N many s ry vertically separate |

—_\ layers -
ne layers >\ strict layers violated) ve A=

3.1 Design Principles

Like code smells, architecture smells are caused by a violation of rec-
ognized design principles. This is the reason why design principles can
provide us with valuable tips for curing architecture smells. If the vio-
lated design principle can be identified, it will give us a first idea of
how a better system structure might look like. Therefore, we will pro-

Fig. 3-2
Eclipse Subsystems:

Vertical Layers

Fig. 3-3
Architecture Smells

36~

3 Architecture Smells

Fig. 3-4
Design Principles

vide an overview of today’s popular design principles in the following

table (Figure 3-4).

Principle

Explanation

DRY - Don't Repeat Yourself

Do not write the same or similar code more
than once. Also called “Once and Only
Once" principle.

SCP - Speaking Code Principle

The code should communicate its purpose.
Comments in the code could indicate that
the code communicates its purpose insuffi-
ciently.

OCP - Open Closed Principle

A design unit should be open to adjust-
ments. Such adjustments shall not render
existing clients invalid. Inheritance is one of
the mechanisms that will let you achieve this
goal: the subclass can make adjustments
while the clients of the superclass remain
valid.

LSP - Liskov Substitution Principle

One instance of a class must be usable for
all instances where the type is the super-
class. Not only it is required that the com-
piler translates the source code, but after
the modification the system must still func-
tion correctly.

DIP - Dependency Inversion Principle

High-level concepts shall not depend on
low-level concepts/implementations. The
dependency should be vice versa, because
high-level concepts are less liable to change
than low-level concepts. One can introduce
additional interfaces to adhere to the princi-

ple.

ISP - Interface Segregation Principle

Interfaces should be small. The methods of
single interfaces should possess a high
number of couplings.

REP: Reuse/Release Equivalency
Principle

The elements that are reused are the ele-
ments that will be released.

CRP: Common Reuse Principle

The classes of a package are reused as a
whole.

CCP: Common Closure Principle

The classes of a package shall be closed
against the same type of changes. If a class
must be changed, all classes of the pack-
age must be changed as well.

ADP: Acyclic Dependencies Principle

The dependency structure between pack-
ages shall be acyclic.

SDP: Stable Dependencies Principle

A package shall only depend on packages
that are at least as stable as itself.

SAP: Stable Abstractions Principle

The more stable a package is, the more ab-
stract it should be. Instable packages
should be concrete.

3.2 Smells in Dependency Graphs

~37]

Principle Explanation

TDA: Tell, Don‘t Ask Don't ask an object about an object, but tell
it what to do. Similar to the “Law of Deme-
ter“: Each object shall only talk to “friends,”
i.e. only to objects that it retains as fields or
receives as parameters.

SOC: Separation Of Concerns Do not mix several concerns within one
class.

3.2 Smellsin Dependency Graphs

Classes can be coupled through use and inheritance. First, we will only
deal with use. If we look at the uses relations between the classes of the
system, we will see the static dependency graph. During system runt-
ime this will result in the dynamic dependency graph between objects.
In this chapter, we are only interested in the static dependency graph.

3.2.1 Obsolete Classes

Classes that are no longer in use will burden the system with obviously
obsolete functionality. Not only single classes can be no longer in use,
but also entire class graphs? (see Figure 3-5).

Unused classes mainly emerge for two reasons:

1. Technology is hoarded as a supply: A developer speculates that
the class might eventually be used, although there is no evi-
dence of a concrete demand for it.

2. Refactorings: A formerly required class becomes obsolete due
to modifications of the system.

2. In our analyses, we will focus on complete applications. Naturally, obsolete
classes can easily emerge in frameworks and libraries if they are only provided
to service the client.

Fig. 3-4
Design Principles

Fig. 3-5
Unused Classes: D,
E F

38~

3 Architecture Smells

Fig. 3-6
The Tree-like
Dependency Graph

Fig. 3-7
A Cycle between Two
Classes

Fig. 3-8
A Cycle Including
Various Classes

3.2.2 Tree-like Dependency Graphs

Tree-like dependency graphs (see Figure 3-6) indicate a functional
decomposition of the system. Each class of the tree is used by exactly
one other class. Reuse does not happen.

main -———3 datainput
I
|m———————————— o
N v/
data check data storage
i |
| |
CTTTT T I | |
A/ \/ \
context-free check context check protocol

3.23 Static Cycles in Dependency Graphs

Two classes using each other constitute the simplest imaginable cycle
in a dependency graph (see Figure 3-7). Cycles can also include various
classes (see Figure 3-8).

| order |<———>| position

customer K-—-—————-- .
I

| order |~ -= —)l poslition

The presence of many cycles in a system will lead to its lumping.
Cycles have negative effects on:

a) Understandability: The classes cannot be understood ‘one after
another,” because they presuppose each other to be under-
stood. Instead, one has to alternate between classes to compre-
hend the graph in its entirety.

b) Maintainability: Cyclic dependencies can have severe and un-
predictable consequences, thus making it harder to change the
systems affected by them.

3.2 Smells in Dependency Graphs

~39]

¢) Planability: Cycles make it more difficult to anticipate the ef-
fects of changes. It will be more difficult to assess the effort re-
quired for and the complexity of a change.

d) Clarity in design: Often in one cycle each class can either di-
rectly or indirectly access any other class in the dependency
graph. Therefore, in principle concerns can be arbitrarily dis-
tributed among these classes. The danger of placing methods in
‘wrong’ classes is considerable, which in turn makes it more
difficult to comprehend the design.

e) Reusability: The class graph can only be (re-)used as a whole.
If in a given context only one class from the graph is of inter-
est, this class cannot simply be reused.

f) Testability: The classes can only be tested in their totality as a
graph. This increases the demand for testing and error-search-
ing. If one wishes to isolate classes during the test, relatively
complex test patterns, such as Mock Objects (see References),
must be utilized.

g) Exception-Handling: Often exceptions will accumulate in cy-
cles. If some method in the cycle throws an exception, this
event will potentially affect all other methods in that cycle.

Obviously longer cycles have much stronger smells than short ones.
Especially cycles between exactly two classes can be desired — such
cycles are even conditional for some design patterns (for example iter-
ator, see References). Besides their length, interaction of the cycles is
also of interest. If several cycles share the same classes, the situation
will become much more complicated and soon lead to uncontrollable
chaos. An impression of this constellation is given in Figure 3-9,
although here ‘only’ the dependencies between packages are illus-
trated. If one tried to understand Swing in its entirety in order to mod-
ify it, no reasonable starting point could be found. Also, modifications
at any point in Swing might result in side-effects in any other location
in Swing.

3 Architecture Smells

Fig. 3-9
Cycles in Swing-Pack-
ages

3.24 Visibility of Dependency Graphs

Object-orientation supports the principles of encapsulation and of
information hiding: the internal implementation is hidden behind an
interface. Many developers believe that encapsulation and information
hiding will emerge solely because fields are declared private. This is
not the entire truth though: In many systems it is possible for clients of
an object to receive fields from the object via get methods. Based on
the delivered objects, the client can continue to navigate. As a matter
of fact, the dependency graph in the system is public and not at all hid-
den. A system with a public dependency graph will create more prob-
lems if one tries to change it, whereas changes to a private dependency
graph will only have local effects.

The Law of Demeter (see References) as well as the Tell, don’t ask
principle (see References) are pointing in the right direction: ideally a
client tells the used object what it is supposed to do. The client shall
not accept another object from the used object, nor work with it.

Let us, for instance, imagine a number of orders in various states.
We can especially differentiate between open or closed orders. Open
orders are the ones in which the company has invested some money,
but payment issues with the customer haven’t been settled yet. Thus it
is interesting to find out how much the total value of all open orders is.

3.2 Smells in Dependency Graphs

1

If we spot a method calculateValueOpenOrders somewhere in the
following form, the Tell, don’t ask principle has been ignored:

public float calculateValueOpenOrders
(ListOfOrders orders) {

float totalvalue = 0.0f;
for (int i=0; i<orders.getNumber (); i++) {
Order a = orders.getOrder (i) ;
if (a.isOpen) {
totalValue += a.getValue();

}

return totalValue;

Foo

+calculateValueOpenOrders()

T
!

ListOfOrders -7
|
L

In our second step, we move the case statement between open and not
open orders into the class Order and get:

public class ListOfOrders {
public float calculateValueOpenOrders () {
float totalValue = 0.0f;
for (int i=0; i<getNumber (); i++) {
Order a = getOrder(i);
totalValue += a.getOpenValue() ;
}

return totalValue;

public class Order {
public float getOpenValue () {
if (isOpen()) {

return getValue () ;

Fig. 3-10
A Violation of “Tell,
don't ask”

else {
return 0;

We might be unhappy about the fact that in this example the order
returns the open value. If you decided to apply the Tell, don’t ask prin-
ciple one more time, you’d supplement the class Order with a method
addOpenValue and remove the method getOpenValue. However, this
would mean that the class Order would know that a certain number of
orders exists. In this case, we would violate the Separation of Concerns
principle.

Not only is this new implementation a bit shorter, it also possesses
a number of additional advantages:

The functionality is where it belongs. It is no coincidence that
in the first example the name of the class containing the
method calculateValueOpenOrders has not been mentioned.
In most cases, such methods can be located directly in UI
classes (e.g. OrderEvaluatorDialogue) or in help classes with
bizarre names (e.g. OpenOrders Calculator).

The Tell, don’t ask principle ensures that types are only used
locally, plus they are no longer distributed all over the system.
Thus they will simplify the realization of optimizations.

What makes this smell so unpleasant is the fact that it cannot be found
by merely taking a close look at the dependency graph. One must read
the actual code to determine if many get methods exist, and if they are
used in an undesirable way.

3.3 Smellsin Inheritance Hierarchies

Classes are not only coupled through use, but also inheritance. The
coupling via inheritance provides the advantage of polymorphism (the
ability to adopt multiple shapes). During runtime, objects of different
types can stand behind one identifier. This is made possible through
polymorphic assignments. If an object is bound to a variable, this
object must not necessarily possess this particular variable type. It is
sufficient if the object’s type is a subtype of the variable type.
Inheritance also results in a closer coupling than use. Latest since
the discussion about design patterns we know that in case of doubt use

3.3 Smells in Inheritance Hierarchies

=

is preferable over inheritance: the classes will be coupled less closely,
and the resulting structures can be used more flexibly.

This is why inheritance hierarchy problems are quite severe: due to
the close coupling of the classes in the hierarchy, problems will be
passed on from superclasses to their subclasses.

3.3.1 Type Queries

Each type query in the system (instanceof) constitutes a violation of
the Once and Only Once principle:®> The inheritance relation
expresses itself not only in the classes of the inheritance hierarchy, but
in the clients too. If alterations in the inheritance hierarchy are
required, the type queries must be adapted as well (see Figure 3-11).

List

+getSize() : int
+get(in index : int) : Object]

UnsortedList SortedList
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(in index : int) : Object +get(in index : int) : Object
+insertAt(in index : int, in o : Object) +setComparator(in ¢ : Comparator)

The following code snippet demonstrates how client code for this
inheritance hierarchy could look like:

public void doSomething (List 1)
{
Customer k = new Customer () ;
if (1 instanceof UnsortedList)
{
UnsortedList ul = (UnsortedList) 1;
ul.insertAt (0, k);

3. Each design decision should be expressed exactly in one place, and
one place only.

Fig. 3-11
Inheritance

Hierarchy and Type

3 Architecture Smells

Fig. 3-12
Wrong Inheritance

Hierarchy

}

else

{
SortedList sl = (SortedList) 1;
sl.add (k) ;

}

Actually, the smell is quite helpful here. The type queries are almost
begging for the developer to take a closer look at the inheritance hier-
archy. Indeed the problem can be solved quite easily when the method
add has already been implemented in both List and UnsortedList with
the behavior depicted here.

A large system can hardly be realized without type queries. If a
high number of type queries can be found in a system though, this indi-
cates errors in an inheritance hierarchy. Maybe a subclass has been
derived from another class, because the latter showed some similarity
to it. As a matter of fact, a new superclass, from which both classes
will inherit, should have been extracted first.

Figure 3-12 shows a popular example of a flawed inheritance hier-
archy. It is plausible that a sorted list is a list and therefore permits the
formation of subclasses, but the method insertAt has sneaked into the
list class, and this method does not make sense in the subclass Sort-
edList. Secretly it has changed the list to an unsorted list, and it is com-
mon knowledge that a sorted list cannot be derived from an unsorted
list. Therefore a new superclass List must be created, which will com-
bine the characteristics shared by sorted and unsorted lists alike.

List
+add(in o : Object)
+0etSize() : int
+get(inindex: int) : Object

List

+add(ino : Object)

+getSize() int d>
+get(inindex : int) : Object
+insertAt(inindex: int, ino : Object

T

ist UnsortedList SortedList
+add(ino : Object) ——— ———
af) - i +add(in o : Chject) +add(in o : Chject)
roetSize()cint etSize() - it +getSizel) int
m' mlg()gqm et +get(inindex: int) : Object +get(inindex: int) : Object
mmrgr;rlator(iﬁlc g’rg;m) +insertAt(inindex : int, ino : Chject +setComparator(in ¢ : Comparator)

3.3 Smells in Inheritance Hierarchies

]

3.3.2 List-like Inheritance Hierarchy

In a list-like inheritance hierarchy (see Figure 3-13) each class pos-
sesses a maximum number of one subclass. Such inheritance hierar-
chies either point to speculative generalizations or to too big classes.

«Type»
List

AN

AbstractList

JAN

Listimpl

AN

List of Orders

Speculative generalization means that superclasses were implemented
for a definitely required class in hopes that the created abstraction
might come in handy later on. This situation occurs quite often when
the class hierarchy only consists of two classes.

Unfortunately, we cannot foretell the future and don’t know for
sure which abstractions will be needed later on. Experience has shown
that speculative abstractions are not a good solution if an abstraction
is actually needed. Frequently one will find that, for instance, wrong
fields or methods were put in the superclass, or that the generalization
is required in an altogether different place, or that the design problem
can be solved much more elegantly with aggregation instead of inher-
itance. Usually, in such case the speculative structures need to be rear-
ranged*.

List-like inheritance hierarchies occasionally also emerge when
classes become too long. Reducing the class’s size through subclass for-
mation is especially seductive for newcomers to object-oriented pro-

4. The fact that our observations are always based on complete applications also
applies to this section, whereas in frameworks you will likely find superclasses
and interfaces with possibly only one single implementation. This will partic-
ularly be the case if the framework uses the respective class or class hierarchy
to realize a scheduled extension.

Fig. 3-13
List-like Inheritance

Hierarchy

3 Architecture Smells

Fig. 3-14
Implementation

Inheritance: No

Redefinition of

Methods

gramming: some methods will stay in the original class, while other
methods will be put in a newly created subclass. This procedure is so
tempting because hardly anything can go awry. Besides, it doesn’t
require too much thought.

The close coupling of sub- and superclass will indeed reduce the
size of the superclass, but the subclass will actually stay too big. Its size
is not only determined by its own methods, but by those inherited
from the superclass too.

A subclass formation that is implemented due to the aforemen-
tioned motives will seriously impair the system’s structure: the concept
of inheritance is applied in an ‘alien’ context, which can seriously
impede the understandability of the system.

One indication of too long classes is the absence of redefined
methods inside the subclass (see next section).

3.3.3 Subclasses Do Not Redefine Methods

If subclasses don’t redefine methods of their superclass, this can indi-
cate that no abstraction is expressed through inheritance — we are fac-
ing pure implementation inheritance. Often a uses relation between
classes will turn out to be more effective (see Figure 3-14).

List List of Orders
+add(in o : Object) +addOrder(to a: Order)
+getSize() : int +giveOrder(to index: int)
+get(in index : int) : Object| +giveOpenOrders() : float

_ > ;
1
List of Orders List
+addOrder(to a: Order) +add(in o : Object)
+giveOrder(to index: int) +QEtSIZ§(): |nl‘ ‘
+giveOpenOQrders() : float +get(in index : int) : Object

3.3.4 Inheritance Hierarchies Without Polymorphic Assignments

Similar to the previously mentioned smell, inheritance hierarchies
without their respective polymorphic assignments point to the pres-
ence of unnecessary generalizations. The most significant advantage of
inheritance as opposed to use is its flexibility, which is achieved
through polymorphism. If no polymorphic assignments exist, this flex-

3.3 Smells in Inheritance Hierarchies

1

ibility will not be used, and inheritance can be replaced by uses rela-
tions.

This smell is difficult to detect, because it only emerges when two
situations are combined (inheritance hierarchy and assignments). A
first indication of its presence is when too few assignments exist for the
superclass type and too many for the subclass type, or when the super-
class type is not much used in the system.

3.3.5 Parallel Inheritance Hierarchies

You can find parallel inheritance hierarchies in many systems because
they are so beautifully symmetrical. For example, Figure 3-15 illus-
trates an existing domain-specific inheritance hierarchy between the
business objects Partner, Customer and Supplier. Partners, customers
and suppliers should be displayed on the UI level in list form. Thus,
one view class exists for each of the three business object classes. These
view classes inherit from each other according to the business object
classes’ hierarchy.

Last but not least, parallel inheritance hierarchies necessitate that
one and the same design choice (namely that of the abstractions) must
be expressed in two places. If a revision of this design choice needs to
be made, all parallel inheritance hierarchies must be adapted.

Partner
ListView Partner
Customer Supplier .
ListView ListView Customer Supplier

In many cases, parallel inheritance hierarchies can be resolved in such
a manner that only one inheritance hierarchy is left, while the classes
of other inheritance hierarchies are integrated through use.

Figure 3-16 shows a modified version of the system from Figure 3-
15. The views for customers and suppliers are using the view for part-
ners now, which no longer inherits from them.

Fig. 3-15
Parallel Inheritance

Hierarchies

[

3 Architecture Smells

Fig. 3-16
Parallel Inheritance
Hierarchies Have

Been Removed

Fig. 3-17
Deep Inheritance
Hierarchy

Partner
ListView Partner
' £
Customer Supplier]
ListView ListView Customer Supplier

This smell is also mentioned in Martin Fowler’s refactoring book.

3.3.6 Too Deep Inheritance Hierarchy

Especially in the pioneer days of object-oriented programming very
deep inheritance hierarchies could be found in systems, because if the
concept of inheritance is sound, more inheritance must be better than
less inheritance.

In fact deep inheritance hierarchies can result in extremely flexible
systems. Unfortunately, at the same time the system’s understandabil-
ity and the adaptability of its inheritance hierarchies suffers. If inherit-
ance takes place across 10 levels, it is almost impossible to determine
which implementation of a method is called by reading the code.

If the superclass needs to be changed, this does not only affect
many subclasses. It is also difficult to project how this change will
affect the classes at the bottom of the inheritance hierarchy (see Figure

3-17).

| Bag

E

| SortedSet |UnsortedSet|
| TreeSet || HashSet |

/\

3.4 Smells in Packages

]

Inheritance hierarchies always demand careful planning. Deep inherit-
ance hierarchies require a lot of attention to detail. This attention to
detail will not always be delivered in a project’s daily business routine.
This is the reason why speculative and unnecessary generalizations are
often found in deep inheritance hierarchies.

Easier to handle are shallow inheritance hierarchies, which tend to
be broader or have been united in the formerly separate classes (see
Figure 3-18).

Collection

0.1 g
Sorter

3.4 Smellsin Packages

Java and other programming languages offer concepts for the group-
ing of classes. We will call these groupings packages in keeping with
Java terminology. A package can contain a number of classes.® The
complete class name consists of the package name and the class name.

In Java, packages can be nested syntactically. For instance, the
packages java.util and java.io are located in the package java, or
respectively in packages called java. While specific visibility rules must
be observed for classes within a package, this does not apply to nested
packages. If one decided to rename the package java.io in jio and thus
move it to the root level, this would not affect the classes — merely the
imports would need to be adapted.

In programming languages without a package concept, usually file
system directories will assume the role of packages. Naturally, in this
case specific package visibility is no longer provided.

A few of the smells introduced here can also be found in [Mar-
quardt 01]. In addition, this article also provides solutions for some
package smells discussed in this chapter.

5. We will summarize interfaces in Java or comparable constructs in other pro-
gramming languages here under the term ‘class,” because this is simpler.

Fig. 3-18
Shallow Inheritance

Hierarchy

3 Architecture Smells

3.4.1 Unused Packages

Packages that are not in use burden the system with clearly obsolete
functionality (see Figure 3-19).

Fig. 3-19
Unused Packages
Main: A I
| S
B | & c
1 1
D T E
1
F

Unused packages, like unused classes, are created primarily for three
reasons:

1. Technology hoarded as a supply: A developer speculated that
the package will be required later on, although there is obvi-
ously no need for it.

2. Refactorings: Modifications of the system rendered a formerly
required package obsolete.

3. Changed Requirements: The package contains functionalities
that are obsolete due to new requirements.

34.2 Cycles between Packages

Cycles between packages can be created through use, inheritance or
through a combination of use and inheritance (see Figure 3-20).

3.4 Smells in Packages 51 |

Fig. 3-20

Cycles between
Packages
CLE g

Cycles between packages have a less severe impact than cycles between
classes:

a) Understandability: One cannot gain an understanding of pack-
ages through looking at them ‘one by one,” because they pre-
suppose each other to ensure understandability. Instead, one
must skip between packages and perceive the package graph as
a whole.

b) Clarity in design: The dependency structure of the packages re-
sults in first restrictions for permissible dependencies between
classes. If packages are cyclically dependent, the permissible re-
lations between classes can no longer effectively be restricted.
Also, the assignment of classes to packages becomes less com-
pelling. If each package can be accessed by any other package,
it would in principle be feasible to place classes in any package,
but this in turn would impede the design’s understandability.

¢) Reusability: As a rule, the package graph can only be (re-)used
as a whole. If actually only one package from the graph is of
interest in a given context, this package cannot be simply re-
used.

d) Testability: Packages can only be tested as a complete set. This
leads to a higher demand for testing and error-searching. If one
wishes to isolate packages during testing, relatively complex
test patterns such as Mock Objects (see References) must be
utilized.

Other than in cyclical relations between classes, exception handling is
not impaired by cycles between packages.

Often cycles between packages point to poorly arranged packages.
In most cases, this problem can be solved through simple restructur-

32~

3 Architecture Smells

ing, for example by merging all packages participating in a cycle into
one package, which will then be arranged based on better criteria.

Cycles between packages will frequently lead to cycles between
subsystems (see below).

3.4.3 Too Small Packages

Packages with one or two classes are often not worth the effort of
introducing them: the complexity created by the package is not offset
by its additional structuring.

Such too small packages can easily be removed through relocation
of their classes to other packages. However, one must make sure that
in this process no new cycles between packages are created.

3.44 Too Large Packages

Packages with a high number of classes can be handled much easier if
they are broken down into several subpackages. This will especially
lead to their better understandability.

Sometimes too large packages indicate missing subsystems. The
creation of a subsystem from a too large package can solve this prob-
lem — for instance, if one splits the initially too large package into an
interface package and one or more implementation packages.

3.4.5 Package Hierarchies Unbalanced

In most cases, the Java-JDK requires two-level packages (e.g.
java.util), in some rare cases even three-level ones. Nevertheless, the
JDK is able to somewhat usefully organize some thousands of classes.

Similarly to inheritance hierarchies, shallow package hierarchies
are easier understandable than deep ones. To be fair one must concede
that two-level package hierarchies in projects cannot be created if the
convention for package naming is observed. According to this conven-
tion, the first three layers are taken by country ID, company name and
project name, for example: us.mycompany.myproject. Generally, two
to three layers below the first three should suffice for a system struc-
turing.

If the package structure is unbalanced, understandability is also
impaired. Should all of the application’s business objects be located
under us.mycompany.myproject.bo, the fact that not all UI classes can
be found in a different place under us.mycompany.myproject.ui, but
only packages containing subpackages instead, will cause confusion.

3.5 Smellsin Subsystems

53]

3.46 Packages Not Clearly Named

Especially packages containing classes that are not domain-oriented
are often named ambiguously, and assigning of identical names occurs.
If various packages with names like util, base, framework and toolkit
can be found side by side in the same system and on the same level, it
will be hard for developers to find the package containing the desired
class right away.

Developers will face even greater difficulties when a new, not
domain-oriented class shall be created. Its placement doesn’t seem to
matter. This uncertainty might lead to the idea of introducing another
package — one that’s equally vaguely named.

Ambiguously named packages frequently indicate that the devel-
opers had no real understanding of what’s inside the packages, so it
will come as no surprise if such packages contain classes with work-
arounds or were simply miscreated.

3.5 Smellsin Subsystems

Similar to packages, subsystems summarize classes. They differentiate
between internal realization and public interface. The internal realiza-
tion is invisible for other subsystems. The public interface is comprised
of a subset of the subsystem’s classes.

Packages also distinguish between public and private classes and
methods. However, usually a single package will not suffice to define
an entire subsystem. This requires a number of packages.

A large system should be divided in subsystems. This division will
contribute to the system’s learnability, maintainability, multi-project
development and deployment.

a) Learnability: A first, superficial understanding of the system
can be acquired if one looks at the subsystems and how they
relate to each other.

b) Maintainability: Changes of a subsystem can be carried out in
relative isolation from other subsystems. If a subsystem pos-
sesses a poor internal structure, this will affect the entire sys-
tem.

¢) Multi-project development: The development of single sub-
systems can take place in teams specifically assigned to that
subsystem. Therefore, parallel programming is possible.

d) Deployment: If the system is not needed as a complete entity,
single subsystems can be delivered.

En

3 Architecture Smells

Fig. 3-21
Subsystems

e) Testability: Subsystems can be tested as isolated units. This
also includes the option of defining and executing comprehen-
sive and isolated test scenarios.

Subsystem A - ———--————— |

I

|

|
\/

Subsystem B -- Subsystem C

In very large systems, the subsystem principle can be applied recur-
sively, which will lead to a subsystem consisting of subsystems.

Unfortunately, the popular programming languages do not offer
any options for the definition of subsystems. Often suitable runtime
environments are applied to define and use subsystems. A mechanism
based on the language Java can be found as part of the Eclipse plat-
form’s plug-in concept (see [Eclipse 03]). Similar runtime environ-
ments are, e.g., the DLL concepts, COM components or .NET assem-
blies.

If such a mechanism is not available, one must fall back on con-
ventions, for example by using the root packages as a public interfaces
of the subsystems and interpreting all subpackages as internal realiza-
tion.

Some of the smells surrounding subsystems are caused by missing
subsystem concepts in programming languages. This is, for instance,
the case for the ‘Subsystem-API Bypassed’ smell.

Depending on the used terminology, subsystems are also called
components or plug-ins.

3.5.1 No Subsystems

From a certain size on, a system’s structure — if it is exclusively defined
on the package level — will become increasingly incomprehensible. If
the system consists of more than 100 packages, for example, it is
extremely difficult to recognize and define the structure between the
packages and to maintain it consistently.

3.5 Smellsin Subsystems

~55]

3.5.2 Subsystem Too Large

The phenomenon that no subsystems are defined is a special case that
occurs in too large subsystems. From the subsystems’ perspective one
could say that the entire system constitutes a single (too large) sub-
system.

Like missing subsystems, too large subsystems run the danger of
becoming incomprehensible and containing too many concerns. In
many cases, the occurrence of very large subsystems is accompanied by
a loss of clarity: the subsystem is no longer responsible for a single
task, but it also takes on concerns in other areas.

3.5.3 Subsystem Too Small

Too small subsystems shift complexity from subsystems into the
dependencies among the subsystems themselves (see Figure 3-22). In
the most extreme case, each class represents its own subsystem. Obvi-
ously this will not lead to a reduction of complexity, instead develop-
ers are confronted with an impracticable tangle of dependencies
between subsystems (see also: Too Many Subsystems).

Usually it is possible to merge too small subsystems into larger
subsystems with little effort. However, developers must make sure that
no cycles are created between these new subsystems.

3.54 Too Many Subsystems

If a system consists of many more than 30 subsystems without further
grouping, the understandability of the system will be seriously
impaired. This many subsystems and their interrelations can no longer
be handled (see Figure 3-22).

56

3 Architecture Smells

Fig. 3-22
Too Many Subsystems

t =

e
i
i
]
H

]
|%|
il
i

[
1
e I

1
L1 I
B

T
il
i

|
1
I
I
il
H
oEa
B
m

= -

E
[

|

I

|

L

(|

L
)

1
w

In such a case, further subsystems that encapsulate the existing sub-
systems, should be defined.

Sometimes the subsystems were only created too small (see previ-
ous section). Here, merging the existing subsystems will solve the
problem.

3.5.5 Subsystem-API Bypassed

Since the popular programming languages do not offer generic mecha-
nisms for the definition of subsystems, projects must fall back on con-
ventions. Consequently the subsystem’s public interface — the API —
will be defined through conventions.

Experience shows that such conventions are bypassed under pres-
sure, e.g. lack of project time — either by mistake or on purpose.
Bypassing the subsystem-API and directly accessing the internal imple-
mentation of the component is a practice that is not only common, but
also potentially fatal (see Figure 3-23). The clients actually unautho-
rizedly expand the subsystem-API. The originally exclusively internal
interface, which is now used by a client, becomes involved in the
dependency relationship between subsystems. The result is the ‘Sub-
system-API Too Large’ smell that we are going to describe in the next
section.

3.5 Smellsin Subsystems

571

Subsystem A --

Subsystem C
[] Internal -
| " ; ClassX |
I
|

Subsystem B -

Ly

This scenario will have even more negative implications if the sub-
system developers don’t notice the API’s expansion. Should they wish
to alter or exchange the internal realization of the subsystem, this will
have serious consequences for the clients that bypassed the subsystem-
APL

Such violations can be easily detected or even prevented with the
aid of a suitable runtime environment. For instance, Eclipse Plug-in
Runtime will let you declare the visible packages (public API) of a
plug-in (subsystems). The runtime ensures that other plug-ins (sub-
systems) may exclusively use classes of those packages that have been
defined as visible®.

3.5.6 Subsystem-API Too Large

When the API of subsystem becomes too large in relation to the imple-
mentation, the main purpose of the subsystems is not served. A major
part of the system will be visible to all other subsystems. Therefore, no
significant complexity reduction has been achieved (see Figure 3-24).

6. In the case of a mistake, the corresponding ClassNotFoundException will be
automatically released because a plug-in can only ‘see’ such classes via the
classloading mechanism that have been declared public.

Fig. 3-23
Subsystem B
Bypasses the API of
Subsystem C

Suitable

Runtime Environments

3 Architecture Smells

Fig. 3-24
Too Large
Subsystem-API

Fig. 3-25
Cycles between
Subsystems

Impl

This smell can be detected by a simple means: one only needs to count
the number of classes in the API and then compare the result to the
total number of classes in the subsystem.

What kind of relation between API and implementation size pre-
cisely is useful heavily depends on the context, so that we can not pro-
vide any rule of thumb values here. Library-like subsystems, for exam-
ple, will offer a very versatile API (e.g. a container library).

3.5.7 Cycles between Subsystems

Cycles between subsystems can be created via use, inheritance or
through a combination of use and inheritance (see Figure 3-25).

Subsystem A (-——---—-——-

I

|

|
\/

Subsystem B -- Subsystem C

At first sight, cycles between subsystems have less serious implications
than cycles between classes:

a) Understandability: Subsystems cannot be understood by look-
ing at them in a sequential order, because they presuppose each
other to ensure understandability. Instead, one must skip be-

3.5 Smellsin Subsystems

~59]

tween subsystems and perceive the subsystem graph as a
whole.

b) Clarity of design: Often cycles between subsystems hint at un-
clear concerns of the subsystems. In many cases it is impossible
to resolve immediately in which subsystem the wanted class is
located, or where a new class could be sensibly placed.

¢) Reusability: The subsystem graph can only be (re-)used as a
whole. If, in a given context, only a single subsystem from the
graph is of interest, this subsystem cannot be reused as a stand-
alone, i.e. isolated from the other subsystems.

d) Testability: A subsystem cannot be tested isolated from the
othersubsystems.

e) Parallel development: Cyclic dependencies between subsystems
make the parallel development of subsystems by different
teams and/or as part of different projects more difficult.

Exception handling is not affected by cycles between subsystems.
Although cycles between subsystems create less problems quantity-
wise than cycles between classes, they are much more problematic in
practice. The relations between subsystems are an important aspect of
software architecture and — contrary to cycles between classes — they
cannot be cured locally. To achieve that, the system’s architecture must
be modified. If we are dealing with a large system, the APIs between
the subsystems must be changed. However, sometimes the subsystems
are maintained by different teams. In that case, the teams must coordi-
nate their efforts.

Often cycles between subsystems point to unfavorably arranged
subsystems. The problem can be solved, for example, by merging all
subsystems participating in a cycle into a single subsystem, which then
can be broken down based on better criteria.

3.5.8 Overgeneralization

In order to assure that subsystems provide the greatest extent of reus-
ability, they must be flexibly applicable. This generalization can be
overdone though, which will result in the subsystem’s overgeneraliza-
tion. It will become more flexible than it actually needs to be. Not only
does this lead to additional subsystem development work; it also
makes using the subsystem more difficult. Overgeneralization occurs
when the clients — in relation to the size of the used subsystems —
require a large amount of code.

3 Architecture Smells

Fig. 3-26
3-tier Model

Another indicator of overgeneralization is violation of the Once
and Only Once principle. All clients of the subsystem write very simi-
lar code to parameterize the subsystem for its purposes.

This problem can be tackled by moving the always identical client
code into the subsystem. Afterwards, the subsystem can be refactored
internally, so that overgeneralization will not become an issue.

Of course the problem of overgeneralization can also be found on
the methods, classes and packages level.

3.6 Smellsin Layers

Besides the breaking down of a large systems into subsystems, the
ordering of subsystems in layers has proven to be efficient. Each layer
is assigned a specific aspect of the system. One of the most popular
generic layer models is the 3-tier model (3-tier architecture, see Figure
3-26). It emphasizes that Ul layer, domain model, and persistence
should be kept separate.

User Interface

Domain Model

Persistence

A more detailed layer model is that by Baumer (see Figure 3-27). It dis-
tinguishes between three domain-independent layers: system base,
technology and handling & presentation. The three domain model lay-
ers business domain, business section and application context build on
the generic layers. In the business section layer different products are
located, which may not depend on each other (see dashed line in the
illustration). The stretched angles of the technology and handling &
presentation layers indicate that the layering is not strict: all three
domain model layers may use these two technical layers. More details
regarding this layer architecture can be found in [Baumer 98].

3.6 SmellsinLayers

Gl

Application Context

Business Domain

Handling & Presentation

Technology

System Base

Domain-specific layer models are the ISO-OSI model” for distributed
systems (see Figure 3-28) or the layering of plug-ins in Eclipse® (see
Figure 3-29).

Application (Top) Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical (Bottom) Layer

7. Details can be found in [Kerner 89].

8. Although the documentation for the Eclipse platform does not mention any
explicit layer architecture, the layering displayed inside the Eclipse platform
and the projects building on it are easily recognizable.

Fig. 3-27
Béumer's Layer
Model

Fig. 3-28
1SO-OSI-Layer
Model

| 62 3 Architecture Smells

Fig. 3-29
The Layers of Eclipse

Help | Update | Text
(optional) | (optional) | (optional) IDE

Ul (Generic Workbench)

Resources
(optional)

JFace

SWT

Runtime (OSGi)

The layer models assume different perspectives of the term layer. Con-
sequently, the layers of the 3-tier model as well as those of the ISO-OSI
model are strict: each layer may only access the layer directly below it.
Layers that are located farther down cannot be used. Thus the Ul layer
of the 3-tier model is not entitled to directly accessing the persistence
layer. Strict layers always apply the principle of information hiding:
each layer conceals all layers below it.

If a layer is allowed to access other layers, accessing it through the
layer directly below, it is called non-strict. Strict and non-strict layers
can both be utilized within the same layer model: for instance, in the
WAM? layer model the handling & presentation layer is non-strict,
whereas the technology layer is strict and hides the system basis layer
from other layers.

A second distinguishing criterion is the interface between the lay-
ers. For protocol-oriented layers, such as the ISO-OSI model, the inter-
faces between the layers are provided by functions. At the interface, no
classes for building subclasses are offered. The APIs of object-oriented
layers (e.g. in the Eclipse layer model) primarily include interfaces and
abstract classes that either cannot or should not be implemented. In
principle though, protocol-oriented and object-oriented layers can be
mixed.

The major advantage of object-oriented layers is their flexibility,
which is achieved through subclass-forming. Protocol-oriented layers,
on the other hand, offer more flexibility in layer implementation and
allow the use of non-object-oriented technologies for the realization of
layers. This can be a huge advantage if relevant portions of the layer

9. The German acronym WAM stands for Werkzeug, Automat & Material,
which translates into ‘tools, machine & material.’

3.6 Smellsin Layers

~e3]

implementation already exist in a non-object-oriented programming
language like Cobol or are built from purchased systems that do not
possess an object-oriented interface. Thus, protocol-oriented layers
allow a much simpler exchange of complete layer implementations.

In very large systems some layers are also separated vertically in
addition to their horizontal separation, to define a so-called product
line. One example of this practice is the business section layer in the
layer model according to Baumer. The single products in the business
section layer are not allowed to depend on each other. Typically for
such product line architectures, the separation of products is not
applied to all layers: the lower layers are used by all products. Other-
wise one would simply have completely separate systems.

3.6.1 NolLayers

Demand for change can occur in different areas. Often layers are
formed based on the large areas in which modification requirements
emerge. For example, the 3-tier model uses the areas user interface,
domain model and persistence.

This type of layering enables easy identification of those areas of
the system that will potentially be affected by a change. For instance
will a change of only the domain model not affect persistence.

If no layers exist, this kind of orientation aid is missing. Should the
system consist of a large number of subsystems, it will be extremely
difficult to identify potentially affected subsystems without layers.

For most systems, developers can name a layering that was
intended. However, in many systems this intentional layering is vio-
lated so gravely that in the end no layers can be identified anymore.

3.6.2 Upward References between Layers (Cycles between Layers)

If a layer uses a higher located layer, the basic principle of layering has
been ignored. Modifications of one layer cannot only have conse-
quences for the higher layers, but also for those that are located further
below (see Figure 3-30).

3 Architecture Smells

Fig. 3-30
Upward References

between Layers

Fig. 3-31

Strict Layers Violated

User Interface

|
T =

N 1
Domain Model

1
T 7T

N\ |
Persistence

Simultaneously, upward references also create cycles between layers.
They have similar effects as those created by cycles between sub-
systems (see Cycles between Subsystems smell) and might lead to the
emergence of cycles on the subsystem level. Other than subsystems,
layers make it comparatively easy to identify which relation is the one
that is not permitted: namely always the one from bottom to top.

3.6.3 Strict Layers Violated

Since the common programming languages do not provide concepts
for the definition of layers, layers must be built based on conventions.
In this scenario, one cannot reliably prevent that strict layers are vio-
lated. It can always happen that a layer skips the one directly beneath
it and accesses a layer further below instead, be it accidentally or on
purpose (see Figure 3-31)

User Interface

N
Domain Mo

Nz
Persistence

™

If layers that are basically strict are violated, their alterability is
affected. The number of a layer’s potential clients will increase, and the
dependency between layers will grow.

3.6.4 Inheritance between Protocol-oriented Layers

Inheritance between protocol-oriented layers is not allowed. Other-
wise a stricter than desirable coupling would occur. In particular it

3.6 Smellsin Layers

~e5]

would become impossible to re-implement the layer that inherited in a
non-object-oriented programming language later on. Moreover, inher-
itance generally restricts the alterability of the lower layer, because
changes to the superclasses can only to a certain extent be hidden from
subclasses.

Additional techniques allow the recognition of such layer viola-
tions at the time of development. Aspect], an aspect-oriented language
extension for Java, offers mechanisms for controlling method calls
between layers. One example of such an aspect can be found in [Bod-
kin et al. 04].

3.6.5 Too Many Layers

Strict, protocol-oriented layers cause indirections: The supervisory
data flow begins in the uppermost layer and proceeds downwards
layer by layer. If a call results in a return value, the return value will be
handed upward, following the same route.

The existence of many layers can create unnecessary indirections:
one indication of unnecessary indirections are dumb delegations: one
method simply invokes another method without implementing any
functionality of its own. Whereas the single occurrence of a delegation
is not necessarily to be considered bad, extensive use of delegations
between many layers can point to problems. If many delegations exist,
most likely a number of negative effects will follow in their wake:

A lot of effort must be invested in the programming of meth-
ods without implementing any functionality.

Program understandability will suffer.

The ensuing modifications will require a lot of effort. Specifi-
cally modifications of parameter lists in a lower layer will
impact all higher layers.

3.6.6 References between Vertically Separated Layers

We already discussed that layers cannot only be arranged horizontally,
but also vertically. This is often done to structure separate products or
business sections. For example, a product line is a set of software sys-
tems that share a common basis. Besides using the same basis, no fur-
ther references between these systems are allowed.

References between vertically separated layers create dependencies
between layers (see Figure 3-32). Thus the purpose of product lines
can no longer be served:

Recognizing Violations
of Layers

[66

3 Architecture Smells

Fig. 3-32
References between

Vertical Layers

Reading the Code Is Not
Enough

Delivery: vertical layers shall be deliverable and applicable
independently from each other.
Parallel development: for each single vertical layer one team
shall be responsible, which does not have to confer with other
layer teams regarding changes.

Core Concepts .

If fundamental relationships between different products in the system
exist, the described vertical separation between layers cannot be made.
In this case, these basic relationships (the stable domain layer model)
will be located in the core concept layer as represented in Figure 3-32,
on which the vertically separated layers are founded.

3.7 Locating Smells

Architecture smells can hardly be found through simple code reading.
After all, they usually emerge not from a single class, but from the
interaction of many classes. Code reviews offer a good framework for
the detection of smells, but even for code reviews a suitable tool sup-
port is mandatory to visualize the system. Whereas simple UML tools
for code reviews will at least visualize the system on the package level,
more specialized tools are required for the detection of numerous
architecture smells.

Modern development environments (for instance Eclipse) offer
powerful semantic search functions. Thus we can easily determine
which classes inherit a specific class, or how many references to a
method exist. In this way, hypotheses about smells can be verified. For
example, if we suspect that only one subclass of class A exists, we can
easily check this: we simply ask for a display of A’s type hierarchy.

Unfortunately, these display options are not sufficient for the
detection of architecture smells. If you don’t know yet which classes
are involved in a smell, you have no venturing point from which to
start searching.

3.7 Locating Smells

“o7l

Besides development environments, a number of tools exist that
can help detect common smells in software systems.

There is a number of tools that can help to find common smells in
software systems. A brief overview of these tools is listed in the follow-
ing sections (the URLSs for these tools are listed in chapter 3-9).

371 PMD

For Java systems, the open source tool PMD (see [PMD 03]) alerts
developers to code smells such as empty catch blocks or unused meth-
ods. However, PMD analyses are restricted to only one class at a time
and do not consider relations between classes. Thus PMD analyses are
not sufficient for the identification of architecture smells. PMD is
available as a plug-in for the popular Java development environments.

3.7.2 JDepend

JDepend (see [JDepend 04]) analyzes the dependencies between pack-
ages and classes and calculates Robert Martin’s metrics (see [Martin
97]). JDepend possesses an interface for the display of dependencies
and couplings (see Figure 3-33), but it also offers a programming inter-
face. The latter enables, e.g., the formulating of JUnit tests that make
sure that no unwanted dependencies are introduced into the system.

More Specific Tools

| 68 3 Architecture Smells

Fig’ 3-33 @JDepend Bl= B
JDepend: Hie
Depen dencies 0 f -Depends Upon - Eferent Dependencies (6 Packages) :
27 epayment adapters (CCi2 ATID Carl Cetd AID 1 Dimy
PaCkageS D com.abc.epayment
[cormsz epayment
D epaymentframewark
@ [epaymentrespanse
D epayment.framewark
= epayment commands (CC:5 AC:0 Ca:0 Ce:l A0 L1 D:0)
D epaymentramework (GG 1 AC; S Card Cer0 A D83 10 Do0AT)
[epayment processor (CC:2 AC:0 Ca 0 Ce:d AD 11 0:0)
Ijepaymentrequest (CC1 AC:D Ca0 Cerl AD LY DO
I3 epayment response (GC:4 AC:0 Cad Cerd A0 105 D08
Used By - Affererni Dependencies (8 Packages)
3 carnahbe epayment (CC:0 AC:D Cal Cex0 A0 1D Do)
D epaymentadapters
[camuz epayment (000 AC O Cal CeDADLOIDN
D epayment adapters (CC:2 AG:0 Car0 Ce: 4 AD 11 DIO)
D epaymentcommands (CC:5 ACG 0 Ca0 Cex1 A0 L1 D:oO)
[epayment framewark (S0 1 ACS Cad Cer0 A 083 10 Di0AT
D epavmentadapters
D epavment.commands
[enayment processar
D epaymentrequest
@ [epaymentrespanse
D epaymentpracessor (CC12 AC:D Ca 0 Cef A0 L1 Dn0)
D epaymentrequest (CC: 1 AC 0 Ca: 0 Cexl A0 LT DOy
Ijepayrnemrespunae (GO ACO Cal Cell ADLOE D09
lepaymerrl.adapters {CC:2 AC:0 Ca:0 Ce:4 A0 L1 D:0)
Example The following Java source code shows how you can test package
dependencies in JUnit tests (source code borrowed from [JDepend
04]):

import java.io.*;
import java.util.*;
import junit.framework.*;

public class ConstraintTest extends TestCase {
private JDepend jdepend;

public ConstraintTest (String name) {

super (name) ;

protected void setUp() {
jdepend = new JDepend() ;

3.7 Locating Smells

~e9]

try |
jdepend.addDirectory
("/projects/util/classes");
jdepend.addDirectory
("/projects/ejb/classes") ;
jdepend.addDirectory
("/projects/web/classes") ;
} catch (IOException ioe) {
fail (ioce.getMessage()) ;

protected void tearDown () {
jdepend = null;

/**
* Tests that the package dependency con-
straint

* is met for the analyzed packages.

*/
public void testDependencyConstraint () {

DependencyConstraint constraint =
new DependencyConstraint () ;

JavaPackage ejb =

constraint.addPackage ("com.xyz.ejb") ;
JavaPackage web =

constraint.addPackage ("com.xyz.web") ;
JavaPackage util =

constraint.addPackage ("com.xyz.util") ;

ejb.dependsUpon (util) ;
web.dependsUpon (util) ;

jdepend.analyze () ;
assertEquals ("Dependency mismatch",
true, jdepend.dependencyMatch (con-

straint));

}

public static void main(String args[]) {

[70~

3 Architecture Smells

Fig. 3-34
ClassCycle: An
Example of a Display
Generated by JUnit

junit.textui.TestRunner.
run (ConstraintTest.class);

}
An Eclipse plug-in for JDpend is available (see [JDepend4Eclipse 04]).

3.7.3 ClassCycle

ClassCycle (see [ClassCycle 04]) is an open source tool for the detec-
tion of cycles between classes. The detected cycles are displayed either
in a XML or an HTML report (see Figure 3-34). Based on the depen-
dencies between the classes, layers are generated and classes assigned
to layers.

%{ Classycle Analysis of JUnit 3.8,1 - Mozilla DEE

Summary

10 cycles
8 lavers
100 classes (using 160 external classes.)

10% Interfaces 275 (453) 6.2(29) 08(2) 21(4)

3% Abstract classes 3| 5360 (9417) 57(8) 37(0) 16.7 (30)

87% Concrete classes 87| 2058 (24251) 22(23) 2941 7.2(64)
Cycles

Click onm behind a number and a popup will show more details.

m 2 = 1 0

i junit.runner.Sorter and inner classes Zm
dgsjsu;;l.a\nrlui.AboulDialog and inner Im 1m 5 1m 5 1
. junit.framework Assert ef al. 2m 1m 2 1m 1 1
i junit.swingui. TestSelector and inner Om 1m 5 1m 5 1| 5
O ERe e I S

3.7.4 Eclipse Metrics Plug-in

The Eclipse Metrics plug-in (see [Eclipse Metrics Plug-in 04]) is an
open source metrics tool that has been realized as a plug-in for the
Eclipse development environment. In a first step it supplies reference
values that enable an evaluation of a software system’s quality. One

3.7 Locating Smells 71 |

must keep in mind though that these values often refer to the code level
(e.g. average method length) and therefore offer relatively little sup-
port for an examination of the architecture. Moreover, it often remains
unclear where the problems are stemming from and what must be
done to solve them.

At least the Eclipse Metrics plug-in is able to graphically display
the relations between packages, so that one can detect one or another
architecture smell, given a bit of patience and some knowledge about
the targeted architecture (see Figure 3-35).

Fig. 3-35
Eclipse Metrics Plug-

F PatternMatcl
Addbafore ERLAHAL

Around
m m Lu:T\..p- Othareiss

y Paseription
AddAfts [GlobNe v S Optien
Prcmmuuoda MatchResult I

7
Ifl optionDefinad Nnr.-...mmnnd

B Procead

Replace 511 7
— —— FDLCData
’ -\ Outpu‘:ﬂc-dc

Braak

in: Package Overview

Extansion

| &
/ Ry
M Fequires
SatVar
'wh-

a ExpressionEvalustor

SymbalTable

varisble I

HameResolver

FPLEventListener
r

FPLEventSupport

3.7.5 RefactorIT

RefactorIT (see [RefactorIT 03]) is a commercial refactoring tool that
does not only support refactorings, but also the preceding step of

3 Architecture Smells

Fig. 3-36
Dr. Freud: Package

Overview

detecting smells. To this end it provides the common metrics as well as
some dependency analyses.

3.7.6 Dr.Freud

Dr. Freud (see [Dr. Freud 04]) visualizes dependencies between pack-
ages and classes (see Figure 3-36) and calculates Robert Martin’s met-
rics (see [Martin 97]). Currently, Dr. Freud is still being developed, but
it worked quite decently in our tests.

"3
M-

b o R o O B o o

BRI LR B
€0 36 B ki Sanice B

L]

£
a

FeITRPIRYTYTY

W e st

PPN RS L g 2
2 BEEREFR] E5E
pricfefafafaging

|

3.7.7 SAA4J: Structural Analysis for Java

SA4] (Structural Analysis for Java, [SA4] 04]) is a promising IBM
technology preview. This tool visualizes the dependencies between
packages in different ways. Particularly interesting is its highlighting of
packages which are difficult to change as well as its tracking of direct
and indirect dependencies, starting with a class. These functions allow
developers to anticipate the consequences of changes to a class.

3.7 Locating Smells 73 |

Fig. 3-37
SA4J: Dependencies

In addition, SA4] possesses an Auto Explore function that will run a
movie clip showing dependencies between packages (see Figure 3-38).
This feature provides an amazingly concise insight into the system’s
structure and quickly detects problematic dependencies.

=

3 Architecture Smells

Fig. 3-38

SA4J: Dependencies
of Each Single
Package

material medikamente

tnfll
|
il I [
domainvalue therapieplanung
| 7
N | 4
d
\\ | %
% I ¢
= 7/
¥
| _ [[
patienten automaton uke
4N
VAR B
/ I N
/ s
s I N
7 | N
s | X
£ | o

service

3.7.8 Sotograph

The commercially available Sotograph'® (see [Sotograph 03]) was
developed specifically for the detection of architecture smells. It identi-
fies the smells depicted here with little effort and is thus an important
aid in controlling the architecture of a large software system. As far as
we know, Sotograph is the only tool that can analyze relations
between subsystems and layers (see Figure 3-39).

Moreover, it is an interesting fact that Sotograph manages all
information obtained from a system analysis in a relational database,
thus making it easy to create individual queries and evaluations in
Sotograph. Due to its own database storage, Sotograph also allows the
efficient analysis of extremely large systems (several million lines of
code). Sotograph is described in detail in chapter 7.

10. The name is a compound of software and tomograph. In effect, the Sotograph
is a tomograph capable of visually displaying the internal structure of a soft-
ware system.

3.8 Preventing Smells 75|

Fig. 3-39
Sotograph: A Part of
a Subsystem Graph

ssubsystems
Took. result

ssubsystems - "
Mook trerd ools. metric -> Base.tool - 15 Inheritances]
ssubsysterms e, ssubsystems
Took.graph . Sting. pid4|
«subsystem»\ ssubsysterns
{Base projecttres

Took . subsystem \
¢l subsysterms

ssubsystem» subsy‘ste Base.guiuti ssUbsystems
; ¥ * AT ;
Too k. dbview Tock.mahager '..};3?‘/‘:'4;" “ P lugirs
A Ay

I \ .

b f A7 «subsystems add)

ssubsystems 4 Ela e.table ssubsystems
Toob_exte"naledhor/Db J

Base. util
ssubsysterns rs
Took. architecture f
ssubsystems 7

B
Base. annhctation

3.8 Preventing Smells

In theory, all smells can be prevented through disciplined program-
ming. In practice things don’t quite work this way. The motto here is:
The difference between theory and practice is smaller in theory than in
practice.11

The reasons for the occurrence of smells are manifold:

IDEs: Modern development environments automatically insert
the imports for required classes and packages. Developers are
no longer forced to encode the imports manually and must not
reflect about whether the import is permitted, or if it might
lead to a cyclical dependency between subsystems.

Pressure of time: When the upcoming release of a system shall
be delivered as soon as possible, developers are frequently
pressured into violating the architecture. It is the only way of
meeting the deadline. Due to time pressure, these violations of

11. We found this quote on the Internet.

3 Architecture Smells

architecture are often not documented, and often they will not
be removed after release.

Misunderstandings: Sometimes developers do not fully under-
stand the scope and premise behind a system’s architecture.
They conform with what they did understand and unintention-
ally violate the architecture. This phenomenon occurs almost
always during the training of new employees or project mem-
bers.

Changes in architecture: Projects that run over a longer period
usually require repeated adaptations of the software architec-
ture. These adaptations are not always done incrementally, so
that existing code violates the new architecture.

Technological Changes: The replacing of a technology compo-
nent with a new version or with a totally different component
can cause a whole series of deprecated warnings to occur at
once.

In spite of these problems, at least cyclical references between sub-
systems can be constructively prevented: in the development environ-
ment, each subsystem is created as a project of its own, and the permis-
sible dependencies between subsystems are defined as project
dependencies in the development environment. In Java this will lead to
the creation of one JAR archive for each project. With its dependencies
between projects in Eclipse and the Eclipse plug-in model, Eclipse
offers excellent support.!?

12. For business applications, the Eclipse plug-in model can also be used without
IDE. It offers a very powerful component model for Java.

3.8 Preventing Smells

771

Excursion: You Have to Live Architectures

A contribution by Markus Volter (voelter@acm.org)

In the course of the development of an enterprise system (J2EE
server, rich client) with about 20 developers, soon a classic ‘dying’ of
the architecture set in. With ‘dying architecture’ T mean that the
architecture smells have such a severe impact that the quality level
targeted by the architecture can no longer be reached.

Alas, everything started out so well! The concepts were clear-cut.
The technical prototype was a success, the customer was thrilled and
Gartner Group decided that the architecture was flawless. Then real
life began to take its toll: The number of developers went up, the
average qualification sank, the architect always had other things on
his plate — and time pressure increased.

The consequence was that the architecture concepts were exe-
cuted less and less consistently. Dependencies were in a tangle, per-
formance dropped (too many client/server hops and too many single
database queries), and originally small modifications turned into
huge catastrophes. To a certain extent the architecture concepts were
circumvented on purpose. For example, classes were instantiated via
Reflection because the class was not accessible at compile-time.

One problem of architectures is the fact that traditional develop-
ment methods do not allow an automated checking of many archi-
tectural specifications (with model-driven development and AOP
(aspect-oriented programming) some betterment can be expected).
The purpose of many specifications remains in the dark anyway as
long as developers can’t see the whole picture. Due to typical project-
related constraints, developers often have no chance to familiarize

themselves well enough with the architecture.

3 Architecture Smells

So What Is the Morale of this Story?

Architecture concepts are very well, indeed they are very impor-
tant. Just as important is the training and coaching of the devel-
opers to ensure a correct implementation of the architecture.
Regular reviews of the code are essential to discover and eradi-
cate unintentional or wilful violations of architectural specifica-
tions as early as possible.

It is common knowledge that the correction of a mistake will
become the more expensive, the longer you wait with it in the
process. Since architectural concepts mostly define fundamental
issues, it is particularly important in this context to heed this
principle.

3.9 References

[Baumer 98] Dirk Baumer: Software-Architekturen fiir die rabmen-
werkbasierte Konstruktion groffer Anwendungssysteme. Ph.D.
Thesis. University of Hamburg, Dept. of Informatics, Software
Engineering Group. http://www.sub.uni-ham-
burg.de/disse/12/Beleg.pdf. 1998.

Bdumer describes the architecture principles of large software sys-
tems and presents a model architecture. We derived the distinction
between protocol-oriented and object-oriented as well as that

between strict and non-strict layers which we used in this chapter
from his book.

[Baumer et al. 97] Dirk Baumer, Guido Gryczan, Rolf Knoll, Carola
Lilienthal, Dirk Riehle, Heinz Ziillighoven: Framework Develop-

ment for Large Systems. Communications of the ACM, October
1997. Vol. 40, No. 10, 1997.

The authors describe a tier architecture for large, object-oriented
application systems. The tier architecture introduced here clearly
ventures beyond the scope of common 3-tier models.

[Bodkin et al. 04] Ron Bodkin et al.: Enterprise Aspect-Oriented Pro-
gramming with Aspect], presentation material for the tutorial,
http://www.newaspects.com/

This tutorial about Enterprise Aspect-Oriented Programming with
Aspect] teaches, among other topics, how Aspect]’s capabilities as

3.9 References

~79]

a language can be utilized to determine at compile-time whether
there are method calls that illegally bypass layers.

[ClassCycle 04] ClassCycle:
bitp:/iclassycle.sourceforge.net/index.btml

ClassCycle is an open source tool for the detection of cycles
between classes. It generates reports about class cycles in XML or
HTML .

[Code-Smells 03] Code-Smells: http://c2.com/cgi/wiki?CodeSmell

This page of the C2-Wiki is about code smells and contains a list of
often-occurring code smells. Besides code smells, one can also find
references to a couple of architecture smells.

[Daum 03] Berthold Daum: Java-Entwicklung mit Eclipse 2. dpunkt
Verlag. 2003.

This book does not only elaborate on the Eclipse development
environment but also explains the plug-in architecture that is suit-
able as an application flow environment for business applications.

[Dr. Freud 04] Dr. Freud: hitp:/fwww.freibeit.com/technologies/down-
load

Dr. Freud visualizes dependencies between packages and classes
and calculates Robert Martin’s metrics (see [Martin 97]).

[Eclipse 03] Eclipse: http://www.eclipse.org

Eclipse is an open source development environment with refactor-
ing support for Java. It is sponsored by IBM. Its plug-in architec-
ture allows for an easy expansion of its functionalities, so that
today a great variety of open source-plug ins as well as commercial
plug-ins for Eclipse exists.

[Eclipse Metrics Plug-in 04] Eclipse Metrics Plug-in: http://source-
forge.net/projects/metrics

This is an open source plug-in for Eclipse which provides common
metrics for object-oriented systems, e.g. the average method length.
The resulting values let developers — where this makes sense —
directly navigate towards the source of a smell, e.g. exceptionally
long methods.

[Fowler 99] Martin Fowler: Refactoring. Improving the Design of
Existing Code. Addison-Wesley. 1999.

3 Architecture Smells

The standard work about refactorings. Besides refactorings, this
book contains a list of code smells — that is, the little sisters and
brothers of the architecture smells discussed here. The compreben-
sive code examples refer to Java, but they can relatively easily be
applied to other object-oriented programming languages.

[Gamma et al. 97] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides: Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley. 1997.

This standard work on design patterns also contains patterns
which lead to some of the architecture smells addressed in this
chapter. This is, for instance, the case for the iterator pattern,
which results in cyclical relations between the container and the
iterator. The cycle could be eliminated, but this will lead to some
loss of clarity. This cycle is acceptable though, since only two
classes are involved in it. These are closely coupled anyway and
will be put in the same package.

[Hunt & Thomas 98] Andrew Hunt, David Thomas: Tell, Don't Ask.
http://www.pragmaticprogram-
mer.com/ppllc/papers/1998_05.html

A depiction of the Tell, don’t Ask principle.

[JDepend 04] JDepend: htip:/lwww.clarkware.com/software/]De-
pend.html

JDepend analyzes the dependencies between packages and classes
and calculates Robert Martin’s metrics (see [Martin 97]).

[JDepend4Eclipse 04] JDepend4Eclipse:
hitp:/landrei.gmxhome.delidepend4eclipse

JDepend as an Eclipse plug-in.

[Kerner 89] H. Kerner (Hrsg.): Rechnernetze nach 1ISO-OSI, CCITT.
1989.

Describes the ISO-OSI layer model.

[Lakos 96] John Lakos: Large-Scale C++ Software Design. Addison-
Wesley. 1996.

This book introduces important architecture principles of compre-
hensive software systems that are relevant beyond the C++ context.

[LawOfDemeter 03] Law of Demeter:
http://c2.com/cgi/wiki?LawOfDemeter

3.9 References

~81]

This page of the C2-Wiki gives a description of the Law of Deme-
ter, according to which an object is supposed to communicate only
with its direct “friends.” Technically this means that an object shall
not invoke a method on an object that it received from another
object: method calls on objects which have been the results of func-
tions are not permitted.

[Lieberherr & Holland 89] Karl Lieberherr, Ian Holland: Assuring
Good Style for Object-Oriented Programs. IEEE Software. Sep-
tember 1989. Pp. 38-48.

The article depicts the Law of Demeter.

[Mackinnon et al. 00] Tim Mackinnon, Steve Freeman, Philip Craig:
Endo-Testing: Unit Testing with Mock Objects. XP 2000 Confer-
ence. 2000. The online version of this resource can be found at:
http://www.connextra.com/aboutUs/mockobjects.pdf

The original article about Mock Objects was introduced at the XP
2000 conference.

[Marquardt 01] Klaus Marquardt: Dependency Structures. Architec-
tural Diagnoses and Therapies. In: Proceedings of the Sixth Euro-
pean Conference on Pattern Languages of Programming and Com-
puting (EuroPLoP 2001). UVK 2001

In this article, a number of bad smells are discussed in the form of
diagnoses and therapies. The collection of diagnoses primarily
focuses on architectural aspects and offers a variety of possible
therapies for each smell that will belp remove it.

[Martin 97] Robert C. Martin: Stability. C++ Report, 1997

Although this article is several years old, the content has neither
collected dust, nor is it C++-specific. Martin explains important
architecture principles that can also be found in this chapter’s
architecture smells.

[Mock 03] Mock Object: http://c2.com/cgi/wiki?MockObject

This page in the C2-Wiki depicts the Mock Object test pattern
which allows isolated testing of interdependent parts of the system.
The use of Mock Objects furthers the Law of Demeter and the Tell,
don’t Ask principle.

[PMD 03] PMD: http://pmd.sourceforge.net

PMD is an open source tool for the detection of code smells in Java
systems, such as empty catch blocks. It can also be used to check

3 Architecture Smells

portions of program conventions. As a plug-in, PMD can be inte-
grated in various development environments.

[Produktlinien 03] Produktlinien:
http://www.sei.cmu.edu/plp/product_line_overview.html

This source explains the concept of product lines. According to the
definition given bere, a product line is a set of software systems that
share a common basis.

[Refactoring-Web 03] Refactoring-Web-Site: http://www.refactor-
ing.com.

On the refactoring website operated by Fowler, among other mate-
rial, an online catalogue of refactorings, which has long exceeded
the scope of Fowler’s refactoring book, can be found. One can also
find links to other websites dealing with refactoring.

[RefactorIT 03] RefactorIT: http://www.refactorit.com

RefactorIT is a commercial refactoring tool, which — as a plug-in —
can be integrated in various development environments. Not only
can RefactorIT execute refactorings, but it is also able to create a
number of metrics for Java systems.

[SA4] 04] SA4]: http://www.alphaworks.ibm.com/tech/sa4;j

SA4] (Structural Analysis for Java) is a promising IBM Technolo-
gievorschau. This tool visualizes the dependencies between pack-
ages in various way.

[Sotograph 03] Sotograph: http://www.sotograph.com

The sotograph supports the quality assurance of large systems on
the software architecture level. Besides the system to be checked,
the Sotograph also reads a description of its architecture, against
which it checks the system. Thus architecture smells are easily iden-

tified.

[Szyperski 97] C. Szyperski: Component Software. Harlow, England,
Addison-Wesley. 1997.

The subsystems mentioned in this chapter can also be referred to as
components.

[TellDontAsk 03] Tell, Don’t Ask: http://c2.com/cgi/wiki? TellDontAsk

This page of the C2-Wiki gives an explanation of the Tell, don’t ask
principle, which can also be understood as an clarification of the
Law of Demeter: objects shall not be asked for information, which

3.9 References s3|

will make the client act on it. Instead, the client shall tell the object
what it is supposed to do. Thus is ensured that knowledge about
dependency graphs will not spread over the whole system.

[

3 Architecture Smells

"85

4 Large Refactorings

In this chapter, we are going to address refactorings that are not cov-
ered in Fowler’s work, i.e. those other than basic refactorings.

To this end, we will introduce the term large refactorings to clearly dis-
tinguish them from Fowler’s basic refactorings.

Two exemplary collections of samples form the core of this chap-
ter. They reflect our experiences with and best practices for large refac-
torings. We differentiate between two types of samples: on one hand,
we address organizational problems and solutions as well as those that
are part of the development process. This approach is gaining more
and more relevance, especially for large refactorings. The solutions we
offer can be applied to your own projects and help you find adequate
ways of dealing with large refactorings. On the other hand, we analyze
recurring fragments that you can use as modules for your own large
refactorings.

4.1 Introduction

During our participation in numerous projects we recurrently
observed that — besides fundamental refactorings — larger restructur-
ings are required. If, for example, a pivotal inheritance hierarchy in the
system must be rearranged, the impact of such a change can signifi-
cantly affect the system. It might become necessary to adapt consider-
able portions of the code. We will call such restructurings large refac-
torings.

Large refactorings may be needed for various reasons. These are
the most common ones:

Developers put off small refactorings too long. If a software’s
design isn’t continuously improved, small design weaknesses will

Reasons for Large

Refactorings

lse

4 Large Refactorings

accumulate, and a more comprehensive rearrangement might even-
tually be required.

Architecture smells emerge — unnoticed first — over time. If one
tries to cure them, the respective refactoring can very soon expand
beyond the scope of a small and basic refactoring.

New features or altered software requirements can necessitate
large refactorings. While some features will either integrate seam-
lessly into a software or after a couple of minor refactorings, oth-
ers call for a more elaborate restructuring.

Therefore, many development projects avoid executing large refactor-
ings while a project is underway. As a result, the outdated structures
will often be left in the system, or they will be tackled with a large
redesign after release. We pursue the goal of integrating large refactor-
ings into an ordinary, evolutionary development process.

While many developers possess an intuitive understanding of what
constitutes a large refactoring, it is difficult to come up with a precise
definition. Intuitively, the following characteristics are assigned to
large refactorings:

1. Duration: Large refactorings last longer than one day.
Team: Large refactorings affect the entire project team.

3. Unsafety: Large refactorings cannot be completely replaced by
basic (safe) refactorings. Additional (unsafe) modifications are
required.

Unfortunately, these characteristics prevent a totally clear distinction
between large and basic refactorings. The manual renaming of a cen-
tral method in a big system will take more than a day and concern the
entire team, but it can be fully realized through applying the basic
refactoring Rename Method. If the development environment sup-
ports the renaming of methods, the refactoring will be done in a few
minutes, so that at least the first characteristic of large refactorings
listed here no longer applies.

In this book, we will content ourselves with this loose definition
because we believe it does not impair the comprehensibility and useful-
ness of this chapter. The intuitive understanding based on the three
characteristics mentioned above offers a sufficiently clear framework.

Even while dealing with basic refactorings we learned that these
are no trivial matter. We observed the same for large refactorings.
Often coming up with small steps that are self-contained (i.e. com-
pilable and testable) appears to be particularly complicated.

One of the reasons, among others, is that a large refactoring will
affect significantly more code in the system than a small one. Not all

4.1 Introduction

871

effects that a refactoring has on the system will immediately be evi-
dent. The previously mentioned change impact analysis might be of
some help here. Moreover, the sections on mechanics in Martin
Fowler’s book will provide valuable advice on how refactorings should
be broken down.

411 Important Terms

A number of terms will repeatedly come up in the following sections.
We wish to explain these briefly. First, we differentiate between basic
and non-basic refactorings:

Basic refactorings are those refactorings that are described in
[Fowler 99] and mostly refer to basic object-oriented constructs.

A non-basic refactoring is a refactoring that exceeds the scope of a
basic refactoring as addressed by Fowler. This category includes
the large refactorings discussed in this chapter as well as those
restructurings which [Fowler 99] calls big refactorings.

Besides distinguishing between basic and non-basic refactorings, the
safe execution of a refactoring is also very important to us. In this con-
text, ‘safe’ means that the developers can be certain not to introduce
any new errors in the course of their respective refactoring.

Safe refactorings are refactorings that can be executed without
risking changes to the system’s behavior or creating new errors. If,
for example, a tried step-by-step instruction for a refactoring is
available (such as the Mechanics in [Fowler 99]), the refactoring
can be carried out with no risk of creating new errors.

Unsafe refactorings are refactorings for which no tried step-by-step
instructions are available that would allow their safe, incremental
execution. One example of an unsafe refactoring is the renaming of
a class.

Modern, integrated development environments allow a completely
automated execution of certain refactorings. Such tools can turn
unsafe into safe refactorings. This is, for example, the case for renam-
ing a class. Whereas no mechanics exist for this refactoring that would
allow a safe manual execution, it can be carried out automatically via
an IDE, which guarantees that the system’s behavior will remain
unchanged. In consequence, in this case the renaming of a class with
an IDE belongs to the category of safe refactorings.

A modern IDE’s refactoring support has a quite significant impact
on many refactoring activities. Not only it is remarkable that unsafe

Basic Refactorings

Non-basic Refactorings

Safe Refactorings

Unsafe Refactorings

EB

4 Large Refactorings

Automated
Refactorings

Manual Refactorings

Large Refactorings
Behave Differently

refactorings can quickly be made safe with the help of an IDE. More-
over, some refactorings can be carried out in a short time although
they change many lines of code in the system. For instance, if we
rename a method, this step can potentially affect many places in the
system (e.g. those calling that method). Even though this refactoring is
also considered safe if it’s done manually, the IDE’s refactoring support
changes the work with such a refactoring. We thus make a distinction
between automated and manual refactorings:

Automated refactorings are refactorings that are supported by an
IDE and therefore can be executed automatically. In this process,
the IDE ensures that the system’s behavior will not be changed. As
a rule, automated refactorings are always safe refactorings. In
addition, automated refactorings can be carried out — regardless of
the system’s size

—in a very short time.

Manual refactorings are not supported by the IDE and must be
conducted manually by the developers.

4.1.2 Beyond Automated Refactorings

Until now, theoretical works dealing with refactoring issues foremost
discussed the functional realization of refactorings. They focused on
the automation of basic or even quite complex refactorings or pro-
vided mechanics for refactorings. In contrast, the development process
aspect has rarely received any attention. While it is often stated that
refactorings fit in well with agile development processes, the effects of
refactorings on the development process are hardly ever considered.
This may not be necessary for many basic refactorings, because they
can easily be supervised and handled by a single developer. Here, nei-
ther a specific development process is required, nor must particular
organizational conditions be provided.

Large refactorings behave differently. As Fowler and Beck in
[Fowler 99] already remarked for big refactorings, large refactorings
can affect the whole team and create certain requirements that must be
met by a suitable development process, that is, for large refactorings
we must explicitly address problems of how to plan, communicate and
execute large refactorings in a team.

4.1.3 CanLarge Refactorings Be Avoided?

Large refactorings create additional development problems and
accordingly require additional efforts. Here, we notice that the added

4.1 Introduction

89l

problems can be solved, but they do create an extra demand for plan-
ning, communication and discussion, which leads us to the legitimate
question if there is a way of avoiding large refactorings altogether.

First, one could state that continuous refactoring during develop-
ment renders large refactorings obsolete. This is the basic idea behind
refactoring technology as it is applied, for example, in Extreme Pro-
gramming. Occasionally larger refactorings are needed in XP projects
too though.

This is due to the underlying assumption that software develop-
ment is a learning process. It also means that developers must revise
design choices that were made earlier on if new software requirements
demand a new software-ergonomic design. Depending on how well
the new requirements fit the software’s existing structure, these refac-
toring measures will be smaller or bigger.

For instance, in one project it took us quite a while to find out that
we had, until then, misunderstood a part of the field of application.
Since our wrong model of that field of application naturally had
become a part of the software, the software design needed to be
adapted to suit our improved understanding of this field of applica-
tion.

Surely such effects can be attenuated through the implementation
of either spike solutions or prototypes for the basic system’s architec-
ture at the beginning of a project. However, of course there is no guar-
antee that the assumptions leading to the implementation of the new
design, made at the beginning of the project, will prove to be right.

Thus we arrived at the conclusion that large refactorings cannot
always be avoided. Regular refactoring during ongoing development
helps to keep the design flexible and up-to-date. Design problems will
be noticed early on and therefore can be solved quickly. This protects
developers from postponing refactorings and thus letting the design
degenerate (which, in consequence, would require large refactorings).
Yet misunderstandings regarding the field of application cannot be
avoided entirely.

Furthermore, in connection with our use of the Sotograph, we
observed that violations of architecture can easily happen because
developers cannot always recognize them right away. If, for example,
developers integrate cycles on the subsystem level, there will be no
indication that something is wrong. The cycle remains unnoticed in the
system. Only a systematic analysis will reveal the potential problem.
But even with the aid of the Sotograph, architecture smells cannot be
prevented. The Sotograph will help us realize the actual problem only

Project Example

Spike Solutions

Violations of

Architecture

foo

4 Large Refactorings

after we have already detected the smell. Nevertheless, a large refactor-
ing will often be required to eliminate it.

Excursion: Refactoring — Not as Hard as Expected

A contribution by Berrin Ileri (berrin.ileri@it-fws.com, it-FWS
GmbH) and Henning Wolf (henning.wolf@it-wps.de, it-WPS
GmbH)

Motivation and Background

Together with ten colleagues we are involved in a project for a major
municipal utility. It is our task to develop an individual solution in
Java that mainly serves to support prearrangements for work pro-
cesses. Since altogether four different organizational units (OU) of
our employer are involved in this project, parts of our solution turn
out to be specific to certain fields of application, in addition to those
parts that serve all units.

Our development background is heavily influenced by the German
metaphors ‘Werkzeug’ (tools), ‘Automat’ (automaton), services and
‘Material’ (materials) that constitute the WAM concept. Of course, we also
apply the JWAM framework (http://www.jwam.de), which already offers
a series of abstractions for these design metaphors.

The parts of the system we developed until today comprise
almost 550,000 lines of code with about 3,500 classes (of which
1,000 classes are anonymous inner classes). Nearly 1,000 man-days
were needed to reach the current state. The scale of the scheduled
system upgrading is assessed to require another 3,000 man-days.

Our First Target Architecture

In our project work, we adhere to a layered architecture (see figure
“The Original Layering”) that was familiar to most developers from
other projects. Each class of a layer is allowed to access any other
class of that layer as well as all classes of the layers beneath, i.e. the
layering is not strict. The corresponding package structure looks as
follows (in this and in the following examples we always show two
organizational units; the other two behave accordingly):

4.1 Introduction 91 |

de.customer.project

tools

oul

ou2

general
services
materials
values
util

Tools

The Original Layering

The First Disillusionment

A short while ago we had our first opportunity to have our software
architecture tested with Sotograph. Of course we had hoped that the
result would confirm our skills as software engineers. You may take
a look at the general survey graph below. The lines represent all
kinds of relations (inheritance, usage) between architectural units.
The line width as well as the width of the arrows convey the relative
number of relations.

EB

4 Large Refactorings

1
<<subsystem=>>
PROJECT.tool
<<subsystem>>
PROJECT.service|
1
<<subsystem>>
PROJECT.material
1
<<subsystem=>>
PROJECT.domainvalue
<<subsystem=> ~,|<<subsystem>>
PROJECT.util - JWAM
The First Survey Graph

The high number of double arrows (regrettably) shows that the tar-
geted architecture was violated in many places. In defense of our
approach we’d like to point out that the majority of violations was
caused by (JUnit) test classes that we always put in the package next
to the class to be tested.

With the aid of Sotograph we analyzed those violations in detail
and generated a to-do list containing a significant number of classes
to be moved to another package and a large refactoring for our cen-
tral tool. This tool had until then been insufficiently accessible to the
organizational units, forcing them to take turns in using it.

Our Second Target Architecture
Since the project shall become much more comprehensive in the

future, we at this point decided to alter organizational units to obtain
a clear-cut structure. The package structure looks as follows now:

4.1

Introduction

o3l

de.customer.project

oul
tools
services
materials
values
ou2
tools
services
materials
values
general
tools
services
materials
values
util

The logical structure is shown in the following diagrams:

OE1 OE2

| _Tools
Automata and Services

| Materials |

GENERAL

[Tools |
Automata and Services
[Materials |

The Targeted Logical Structure

| _Tools |
Automata and Services

| Materials |

[oa

4 Large Refactorings

The First Large Refactoring

The already mentioned to-do list formed the basis of our large refactoring.
It mainly consisted of simple relocations of classes into other packages.
The big challenge here was the modification of a rather complex tool that
needed to be broken down into one general part and specific parts for both
organizational units to be supported. Contrary to our misgivings, this
restructuring work was dealt with rather smoothly, requiring little more
than 100 hours (of which 90 were dedicated to the tool’s modification).
However, we were aware that this would not solve all our problems,
although it erased a remarkable amount of ‘white noise’ during architec-
ture analyses.

The result of our refactoring can be seen in the following figure if you
take a look at the top level. The organizational units are independent of
each other, but there are still two double arrows left, which means two
subsystems still depend on each other. To put this result into perspective, it
should not go unmentioned that only a single reference exists between the
subsystems GENERAL and OU2, whereas subsystem JWAM displays six
references to subsystem GENERAL. Especially the latter references may
be confusing, since there can hardly be any calls from general framework
classes that address specific project code. The reason is that certain frame-
work classes are overshadowed and project-specific classes are referenced
within them. This can easily happen when today’s development environ-
ments are used, due to the automated generation of import statements. On
the other hand, we could break down our project into various source code
projects for development purposes to constructively prevent such imper-
missible calls on the compiler’s side.

4.1 Introduction

o5

1]]
<<subsystem=> | | <<subsystem>> <<subsystem>> <<subsystem>>
OE1 QE2 OE3 OE4

<<subsystem>=>
GENERAL

h

<<subsystem>>
JWAM

The Refactoring’s Result on the Top Level

Beneath the organizational unit level we still have got the tool, ser-
vices and materials levels that we need to consider in context with the
subsystem GENERAL. When we did this for the organizational unit
(OU) 1, the outcome was what you see in the following figure. The
architecture we targeted allows the OU tools layer to access all other
OU layers plus all GENERAL layers, while the OU services layer
should neither access the OU tools layer nor the GENERAL tools
layer. This rule also applies to the materials and values layers. This
aspect was observed, although we were confronted with the follow-
ing architecture violations:

5 references from OU services to OU tools

2 references from OU materials to OU services

71 references from GENERAL services to GENERAL tools
10 references from GENERAL values to GENERAL services

In addition, we discovered a reference between GENERAL services
and OU materials that points from GENERAL services toward OU
materials. References in this direction were not planned and thus
constitute another violation of architecture.

1
<<subsystem=>
OE1.tool
1
<<subsystem=>>
GENERAL tool
1
<<subsystem=>>
QE1.service
<<subsystem=>>
GENERAL service
<<subsystem=>>
OE1.material
<<subsystem=>>
GEMNERAL.material
<<subsystem=>
OE1.value \$

<<subsystem=>>
GENERAL.value

Dependencies on the Next, More Detailed Level

If we add the details of architecture violations we detected when we
looked at other organizational units to the ones we already discussed
here, we’ll get a second to-do list which will become the venturing
point of our next refactoring.

4.2 Best Practices for Large Refactorings

“o7]

Conclusion

Architectures provide an overview of complex software systems.
However, architectures are always tailored to meet the status quo.
They cannot apprehend changes that occur in the course of a project.
Without continuous checks if the targeted architecture’s require-
ments are met, the architecture will merely remain a UML diagram
or an outline on paper. It will not noticeably contribute to structuring
the source code. Contrary to our negative expectations, most archi-
tecture violations could relatively easily be cured with little effort.
The less sophisticated refactorings were those most needed though,
as they concerned parts of the system that urgently required adapta-
tions of details.

4,2 Best Practices for Large Refactorings

We will dedicate this section to the difficulties that are either of an
organizational nature or stem from the development process itself.
Such difficulties occur quite often during large refactorings. Typical
problems of large refactorings are:

1. The effects of large refactorings: A large refactoring can affect
big parts of a system.

2. Breaking down large refactorings: Large refactorings must be
broken down into smaller increments.

3. The use of basic refactorings: Large refactorings can only
partly be constructed from basic refactorings. They are more
than just a series of basic refactorings.

4. The process of breaking them down: The breaking down of
large refactorings into single steps is a quite demanding task.

5. Detours in the Code: The introduction of temporary detours in
the code is often necessary. The system structure must deterio-
rate first before it can be improved.

6. Assessment of consequences: It is difficult to predetermine the
consequences of single steps in large refactorings.

7. Unfavorable or wrong refactoring routes: It will frequently
happen during a large refactoring that developers realize that
they’ve chosen an unfavorable or even a completely wrong re-
factoring route.

8. Interruptions: Large refactorings must repeatedly be inter-
rupted to meet new software requirements.

fos™

4 Large Refactorings

Refactoring Budget

per Iteration

9. Loss of Orientation: It is difficult to stay up to date as far as
the actual state and the goal of the large refactoring are con-
cerned.

10.Large refactorings are teamwork: They should not be carried
out by single developers without continuously consulting the
project team.

To deal with these problems, a number of techniques that are widely
applicable have been established in the course of various projects.
They range from planning and project organization questions to con-
crete technical implementations. Because of the vast scope of this field,
these techniques are not as elaborate as Fowler’s basic refactorings.
Even when aided by the techniques described here, large refactorings
will still require a lot of thinking and creativity.

4.2.1 Practice: Scheduling Large Refactorings

Problem

Large refactorings might be needed in the course of an evolutionary
development process, and they can be executed in various ways. Apart
from that fact, in our projects it soon became clear that it is easy to
lose track of large refactorings, and that they will not executed com-
pletely if at the same time the project happens to be subject to further
development. One of the reasons thereof is probably that new features
appear to be more important than a refactoring. Time pressure can
contribute to further delay when certain functions need to be urgently
realized for a specific iteration.

However, it cannot be our goal to put off large refactorings indefi-
nitely. After all, we already learned that refactorings will become the
more difficult to execute the longer they are postponed. This is why we
have to make sure that even large refactorings will not perish in every-
day development work.

Solution

We can solve this problem by implicitly integrating refactoring work in
the planning process. This means that we will include large refactor-
ings in the iteration and release schedules.

In practice, we observed three different options:

Option 1: For each iteration, we schedule roughly the same
amount of time for each refactoring, thus allowing enough time for

4.2 Best Practices for Large Refactorings 99 |

the team to carry out refactoring work and to advance large refac-
torings. We are quasi concealing refactorings behind technical
requirements.

The advantages: From the customer’s point of view, the project
progresses continuously. The customer will not get the impres-
sion that the developers interrupt the project in order to ‘clean
up’ and to eliminate earlier mistakes.

The disadvantages: Refactorings are sacrificed due to technical
requirements. For this variety it is very likely that large refac-
torings will either be forgotten or not even begun.

Option 2: Specific refactoring iterations are introduced on Refactoring Iterations
demand. These iterations only serve the execution of refactorings. on Demand
In the meantime, system development is on hold.

The advantages: This option constitutes a quite simple
approach, since the focus is exclusively on the required refac-
toring work. Thus interferences between work on large refac-
torings and the realization of functionalities are ruled out.

The disadvantages: The customer will not be able to observe
any technical progress. From the customer’s point of view, it
looks like the project is dormant while he/she is paying. In con-
sequence, it is possible that refactoring iterations cannot be
planned due to time pressure.

Option 3: Frequent refactoring iterations. In one project, for Regular Refactoring
example, we conducted three technical iterations and one refactor- Jrerations
ing iteration of a week each and created a release from them.

The advantages: This procedure is simple and allows the team
to solely focus on refactoring work for a defined period. One
achieves an alternation between tense periods (technical itera-
tions) and relaxed periods (refactoring iteration).

The disadvantages: Clearly defined refactoring iterations might
turn out to be too formal and too strict for the team. If, e.g.,
the code is very clean and no large refactorings seem necessary,
a rigidly scheduled refactoring iteration does not make sense.
In addition, this sort of planning invites the neglection of small
refactorings during routine development work. The developers
are possibly tempted to put off refactorings.

One cannot generally say that one of these options is better than
another one. In practice, the decision which one is chosen must be
made based on the respective project situation.

100

4 Large Refactorings

4.2.2 Practice: Refactoring Planning Session

Problem

Large refactorings can be noticeably more difficult and complicated
than their smaller relatives. They clearly require more time and seri-
ously influence a team’s work. Therefore, large refactorings gain more
and more importance in the development process. It is no longer safe
to assume that they — like small refactorings — can be easily dealt with
as part of a developer’s everyday routine, and that they need no atten-
tion during their implementation.

To be able to efficiently integrate large refactorings in an agile
development process, we have to bear in mind the larger picture and
think beyond the refactoring itself. After all, a large refactoring can
affect the work of an entire development team.

The execution of single, partial steps of a large refactoring which
are integrated in the common code repository of the development
team, creates uncertainties for developers who are not immediately
participating in the refactoring work. Once the team has carried out
one half of the refactoring, the code contains portions of the new as
well as of the old structure. In addition, detours are integrated in the
code to allow for these intermediate steps. For the developers it
becomes increasingly difficult to keep track of the entire refactoring.
The question, asked by developers, why a specific method is suddenly
deprecated, is convincing evidence.

Solution

A simple and at the same time basic means is to discuss and plan large
refactorings with the entire team. Similar to a quick design session in
Extreme Programming, all developers shall participate in a brief refac-
toring session, during which the design problem can be discussed and
a possible refactoring route outlined. In addition, the developers can
discuss a rough time schedule for a large refactoring to permit a rather
uncomplicated proceeding.

The refactoring session also fosters direct communication in the
team. After such a refactoring session, the design problem has been
made known to all team members, and they all have been informed
that the respective part of the system will undergo change. Also, all
team members are familiar with the goal of the large refactoring and
thus able to integrate it in their daily work.

4.2 Best Practices for Large Refactorings 1011

For us it has become a significant part of the development process
to discuss major design modifications with the team and schedule
them as part of the process.

4.2.3 Practice: Refactoring Plan

Problem

Typically, a large refactoring will take place over a longer period. In
the course of their development work, the developers will frequently
interrupt the refactoring to further develop other parts of the system or
generally add new features.

Once the important core of a large refactoring has been imple-
mented, in some cases the refactoring is not completed, i.e. there is no
such thing as a ‘clean finish.” For large refactorings this means that, for
instance, implemented detours will remain in the code, or only parts of
the system will be adapted to the new structure. The large refactoring
is left incomplete, with the consequence that the system structure is
suspended in an intermediate state. This preliminary structure con-
tains parts of the new design as well as parts of the old one, including
detours. It becomes much more difficult to understand and change the
system.

If the developers totally forget about the refactoring and do not
finish it, the system will still be runnable, but it will possess a structure
that is inferior to its structure before the refactoring. The superclass
List still has the method insertAt and thus also its subclass SortedList.
Eliminating this constellation was the original goal of the refactoring.
For the team’s developers, this new structure might be much harder to
understand than the old one if they are not aware of the respective
refactoring.

Solution

Besides conducting a common refactoring session, it has proven useful
for us to write down an outline of the previously discussed refactoring
route and put it up somewhere where everyone can read it. For our
work, such a refactoring plan typically contains the single steps of the
large refactoring. Developers shall place such a schedule in a promi-
nent location. Thus it will be visible and present for all developers.
The refactoring plan initially discussed in the team is by no means
written in stone for the whole refactoring period. First and foremost it
serves as a representation of the large refactoring, that is, to bring the

102

4 Large Refactorings

large refactoring to the developers’ attention every now and then. It
can also serve as a guideline for working on the large refactoring. As a
consequence, the single steps of such a refactoring schedule can be
altered, or their order can be rearranged. A refactoring plan is no work
regulation, but an aid for keeping track of the refactoring process.

It is important to point out that the single steps of a refactoring
plan do not exclusively depict modifications of a system (for example
changing class names), but also clarify the intention of that particular
step (class A inherits from class B). A mere listing of modifications
makes a refactoring schedule vulnerable for modifications of the sys-
tem that take place simultaneously.

It has proven especially helpful to check off which steps were
already successfully executed on the refactoring plan. In this way, all
developers of the team can see how far the refactoring has progressed,
and what steps will probably be tackled next.

However, a refactoring schedule does not substitute direct commu-
nication between the developers of a team. Instead it promotes aware-
ness of a large refactoring and its discussion. It helps to keep it in mind
and realize its progress.

Excursion: Electronic Refactoring Schedules

Martin Lippert’s Vision

The manual schedules we introduced in the previous section already
provide some support to the developers of a team for the execution
of a large refactoring. Realizing the effect of a refactoring on the sys-
tem’s concrete source code, however, remains difficult for developers.
They can see that a large refactoring is being carried out that is not
yet finished, and they can recognize what intermediate state it is in. It
remains difficult though to reference, for instance, completed steps of
a refactoring plan to changes in the source code. The question why a
certain method is currently deprecated is not answered in this con-
text.

To offer the developers even more comprehensive support, we
wish to create a connection between the refactoring schedule and the
system’s source code. To this end, it evidently makes sense to convert
the refactoring schedule into a digital version and make it an integral
part of the project’s source code.

4.2 Best Practices for Large Refactorings

103|

First of all this means that the refactoring plan must be digi-
talized and integrated in the shared code repository. Then it can be
directly accessed by each developer from his or her workplace®. A
simple text document would serve the purpose. A comparable result
could be achieved if the developers decide to manage their refactor-
ing plans in a project Wiki web.?

A much better accessibility can be achieved when the digital
refactoring schedule is directly integrated and made visible in the
used IDE. In the Eclipse IDE, this could be realized via a special view.

& Refactoring Planner E@L | W (oo w =F
: t C1-Hierarchy

| Step 1 Create Mew Subclass LargeContainer in C1-Higrarchy

= Step 2: Adapk Services bo Mew Subclass LargeContainer

Eﬁ} org.company. base, services

1@ BaseService

EE} org.company.oel, services

i @@ Calendarservics

£1-@ OE1Materialservice

‘e @ getContainer{CNumber)

@ getContainerInformation{CHumber)

@ sendContainer{IContainer, CReceiver)

G TransportService

E} OFg.COMpany, 0ez, Services

[[+| Step 3: Adapt CE-1-Materials ko Mew Subclass

Skep 4: Make Use of Mew Subclass in OE-1-Tool

Step S Remove Old Classes and Work-Arounds

Refactoring Planner View in Eclipse (Mock-up)

The refactoring planner view in the figure above shows the five steps
of the ‘Extract C1-Hierarchy’ refactoring. The single steps are each
placed next to a check box which announces whether the respective
refactoring step has yet been executed or not. Below each refactoring
step the changes brought about by the refactoring are displayed
(grouped by packages). The changes are made visible down to the
level of single methods.

Optional navigation is possible from classes or methods to either
the corresponding editor or to a diff-viewer showing detailed
changes for each single refactoring step.

IDE integration enables easy changes of the refactoring plan and
committing it back to the common repository. Additionally, IDE
Integration should allow checking off single steps in the refactoring
plan.

104

4 Large Refactorings

With a digitalized refactoring schedule as opposed to a handwrit-
ten plan on the development lab’s wall, not much has been won yet.
Of course it is easier for developers to modify a digital schedule, but
this plan does not possess the same charm as a handwritten plan on
the wall.

A noticeable and important advantage will be won the adoption
of a digital refactoring plan if it is linked to the system’s source code.
In this case, the developers can detect correlations between single
steps of the refactoring schedule and modifications of the source
codes. Consequently, a step in a refactoring plan could be assigned
certain code-modifications. A refactoring step would then hold the
information which places in the code were altered.

Once that information is available, a two-way navigation could
be realized: On one hand, developers would get an overview of the
altered code sections based on the plan. On the other hand, they
could also navigate from the code to the refactoring plan if the
former was modified in the course of a large refactoring. If, for
example a method has been marked deprecated, the developer can
find out to which refactoring step this change can be attributed.©

Refactoring Maps

Electronic refactoring plans possess a number of advantages (see previous
sections). While the refactoring plan serves to visualize the execution of a
large refactoring and makes the single refactoring steps transparent for
each team member, it does not necessarily help the developers in the team
to assess the refactoring’s impact on their daily work outside the refactor-
ing context. Often I — the developer — wish to know how a refactoring will
affect my daily routine. Do I have to look at the refactoring plan at all or
can I do my job without keeping the refactoring in mind?

I want to be able to see at a glance if the refactoring concerns me, if
the part of the system on which I plan to work is already being refactored,
or if that part of the system is approaching refactoring. If the latter is the
case, the refactoring plan will help me get an idea of the refactoring itself
and let me recognize what I have to observe in my work. Should the refac-
toring take place far away from my own ‘construction site,” I can probably
ignore the refactoring plan.

But how can I see at once whether the refactoring is ‘closing in’ or
already affecting the part of the system I am working on?

4.2 Best Practices for Large Refactorings

105|

Our idea is to use a so-called refactoring map to present the required
information in a concise format. A refactoring map represents the system
in two dimensions. On this level, the different parts of the system are
arranged based on a particular pattern. For very small systems a class dia-
gram will suffice; more comprehensive systems require a package or sub-
system diagramd. The developer must be able to identify his or her own
‘construction site’ right away on this map. This can be achieved, for exam-
ple, if the developer is able to isolate the source code on the refactoring
map.

Moreover, a refactoring in progress is visualized on the map
through the use of colors. The affected parts of the systems are tinted
the color assigned to the refactoring. Thus, each developer can easily
see what parts of the systems have already been altered.

s UbEySEEm
DE].5arvices
—
o LISy tET -
eesub — CE1walues
CE1.tools

wcsibmysteme:.
OELmaterlals

wcasubsystamss
CE2.5enIEs
a5 UDEYSE BT —
OE2materils <asUbEYStEm >
- OE2tonls
1
<«subsystemz P —
OEstodks CE2wvalues
<<subsystem:= -uuuhsrstg-:—b =
OFLservies OE3 materials
w81 by SR
S batem>> base materlals
OFvalues
— —1
<<subsystemzs
e s baza.services
basevalues

View of a Possible Refactoring Map

This figure shows a first version of a possible refactoring map. It rep-
resents the system on the subsystem level. The underlaid area of the
map indicates those parts of the system that have already been
changed by the refactoring. In our example, until now the refactoring
seems to have primarily affected materials systems. A single tools
subsystem has also been included.

In this manner, team members working in different locations can benefit from
a refactoring schedule.

We used the Wiki web option in one of our projects and learned that the Wiki
web is easy to handle. It does not offer the same immediate visibility as a
poster on a wall or the source code in the IDE though.

106

4 Large Refactorings

High-risk and Low-risk
Steps of a Large Refac-
toring

Visualizing Intermedi-

ate Results

c. The technical realization could be accomplished with meta tags in the source
code. The refactoring meta tags could either automatically be submitted to
the central repository at check-in, or manually inserted in the code. As of yet,
no implementation of this mechanism does exist.

d. The various display formats introduced here are only the first proposals.
Other formats are also conceivable.

4.2.4 Practice: Refactoring Detail Plan

Problem

A publicly posted refactoring plan that has been discussed by the team
is an important instrument for the coordination of work on a large
refactoring. However, since it is kept somewhat vague on purpose, it is
hard to determine which risks are involved and how demanding the
refactoring will actually turn out to be.

During our project work, we were in for a few nasty surprises: our
refactorings proved to be very complex although they had looked
rather harmless in their flip chart versions.

Solution

The refactoring plan is supplemented by a chart of refactoring details.
This chart should be created by a single developer or a pair of develop-
ers (in keeping with the Extreme Programming approach of utilizing
pairs of programmers) rather than the entire team. The refactoring
plan must be specified, breaking down single steps into basic refactor-
ings as far as possible.

Nevertheless, this does not mean that a large refactoring merely con-
sists of a series of basic refactorings. Additional modifications are required,
for example, if one wishes to exchange the superclass of a class. Modifica-
tions for which no safe refactorings are available pose the main risk for a
large refactoring. Often it is not clear how such a step shall be executed and
what consequences would follow in its wake, i.e. during and after refactor-
ing. In the chart of refactoring details, the distinguishing criterion is whether
the single steps qualify as (low-risk) basic refactorings or as (high-risk)
other modifications.

Especially high-risk modifications must be analyzed thoroughly. Often
it makes sense to begin by simply taking one single step or another. In many
cases, the source of the problem will become obvious in a matter of minutes.
Once this observation has been made, the respective changes can be dis-
carded.

It helps to create a graphic representation of the targeted interme-
diate results as part of the chart of refactoring details (typically using

4.2 Best Practices for Large Refactorings

107|

class diagrams). This will help to visualize the larger picture and to
stay on top of the overall large refactoring process.

Often large refactorings reach stages where the system structure
has already significantly improved. If a large refactoring has reached
such a point but is then interrupted, the system structure will none the
less be better. If a refactoring is stopped prior to reaching a point of
improvement, the system will often still contain detours, and the sys-
tem structure will have deteriorated compared to the original version.
In that case, it is advisable to either undo the refactoring completely or
at least revert it to its last stage.

The stages that mark improvements of the system structure are called
save points. They should be highlighted in the refactoring plan as well as in
the chart of refactoring details. If you work with branches, make sure to
integrate the branches into the main development process as soon as you
reach a save point.

When a large refactoring is carried out, the developers will use a
number of basic refactorings as a rule, although a large refactoring
does not exclusively consist of a series of basic refactorings. It also
requires additional development work.

This observation lets us arrive at the conclusion that large refac-
torings can only be insufficiently automated. It is not enough to plan a
large refactoring beforehand, then break it down into small refactor-
ings that can be automated and proceed to apply the sequence of the
basic refactorings to the code with the aid of a specialized tool. The
developers can execute some step of a large refactorings aided by
refactoring tools, but other steps need to be executed manually.

42,5 Practice: Assessing Consequences

Problem

In many cases, a refactoring consists of two parts: on one hand, we
alter the structure of the code. On the other hand, we also adapt parts
of the system to that altered structure. This will be necessary if inter-
faces or inheritance hierarchies were changed.

Both parts of a refactoring may concern varying amounts of code.
Either the changed or to be changed structure itself contains a large
amount of code, so that the refactoring will become complicated and
comprehensive, or those parts changed via refactoring are used by
many other portions of the code. If we modify an interface or a type
dependency in the course of a refactoring, the clients of the involved

Automating
Large Refactorings

108

4 Large Refactorings

Refactoring Prototyping

class need to be adapted as well. This may turn out to be a task of con-
siderable scope if many clients exist in the system.

The consequences of single refactoring steps are partially hard to
assess. Quite often during a large refactoring one will notice that the
scheduled single steps cannot be carried out in the originally planned
way.

While a refactoring route may be fundamentally wrong, it can also
(and quite often) happen during large refactorings that only certain
steps turn out to be faulty, or that other necessary steps have been
overlooked in the first considerations regarding the refactoring. Those
particular refactoring steps must be reorganized and/or supplemented.
In a worst-case scenario, the developer team is unable to plan each sin-
gle step of a refactoring ahead. Whereas the status quo of the system
and the goal of the change are clearly defined, the approach to getting
there will be established in the process.

In our development processes, we always assume that software
development is a learning process. However, this is not only the case
for the implementation of new features. Large refactorings are more
time-intensive and will restructure complex and/or central parts of the
system. Thus it doesn’t come as a surprise that a large refactoring are
subject to a learning process, which is not always completely planna-
ble. What we are learning on our way influences the choices for our
further proceedings.

Solution

One source of the problem is that we cannot foresee all consequences
of a refactoring beforehand. The larger the system, the more compli-
cated it will be to apprehend even a few refactoring steps.

Modern IDEs allow displaying a system’s call graph. This feature
enables developers to determine from which other methods in the sys-
tem a particular method is called.

This function can be used to get a first impression of the possible
complexity of changes to a method. Through the call graph’s visualiza-
tion, developers can learn with little effort how many places in the sys-
tem access the scrutinized method, and how this method is typically
used.

Of course this function is only useful when the effect of changes to
a single method shall be analyzed. Changes to a class hierarchy cannot
be analyzed with this function.

Many IDEs offer functions for displaying the inheritance hierar-
chies of a class, but the majority of these tools is not able to analyze the
effect of changes to such a hierarchy. Often developers are left with the

4.2 Best Practices for Large Refactorings

109|

sole option of prototyping single refactoring steps in a branch. The
resulting refactoring prototypes will be able to analyze the impact of
changes. Such refactoring prototyping can become quite time-consum-
ing. In order to be able to anticipate future steps, the first ones must
have been executed almost completely.

A similar problem exists in the software maintenance debate.
Here, the approach towards mastering the situation is the use of
sophisticated impact analysis algorithms. Impact analysis aims at
enabling an analysis of the effects that modifications of a software sys-
tem create. Not only are changes to an already modified system ana-
lyzed (Comparative Impact Analysis), but also the possible impact of
future modifications (Predictive Impact Analysis).

The equivalents of these tools can be utilized for more comprehen-
sive refactoring work. They let developers analyze how single refactor-
ing steps will affect a system. This can be useful for recognizing com-
plicated refactoring routes as early as possible. Further information
can be found, for example, in [Hoffman 03].

4.2.6 Practice: Branches

Problem

In fact small steps should support us in breaking down a large refac-
toring. This procedure also aims at reducing the required merge work,
because the small increments can continually be integrated in the
shared code repository.

However, some refactoring steps can be executed in a couple of
seconds with the aid of modern IDEs. In those cases, taking small steps
will not be necessary. If a central method or class is changed though,
this will potentially lead to many automated modifications to the rest
of the system. If the developers commit these changes back to the
shared code repository, comprehensive merge work will very likely be
the result.

Today, automated refactorings can be found as part of each pro-
fessional IDE. They permit modifications of many source code texts at
once (for example, if we wish to rename a central class). As simple and
comfortable this functionality appears to be — in some scenarios it can
turn out to be quite tricky. If, after such a refactoring, we find out that
we took the wrong step, we have to undo that refactoring. Should the
IDE neither support such an undo-functionality, nor should the com-
plementary refactoring exist in an automated version, the developers
will face a lot of work to undo the refactoring.

Predictive Impact

Analysis

Recognizing a Bad
Strategy Early On

110

4 Large Refactorings

Advantages of
Branches

Disadvantages of

Branches

If developers have proceeded implementation of application
requirements, the new classes may interfere with the refactoring steps.
That makes is very hard to undo the refactoring — the application
requirements would be undone too.

Solution

At a certain point a branch is separated from the team’s current devel-
opment work, then the team’s developers proceed to carry out the
refactoring in that branch, while the whole system is further developed
in the repository’s HEAD. As soon as the refactoring in the separate
branch is completed, it is committed back to the up-to-date version of
the system.

This option of conducting large refactorings has a number of
advantages:

The large refactoring can be carried out step by step, and develop-
ers can continue to work on a system that runs without interrup-
tions.

The current working version of the system does not contain any
detours, which would otherwise be required because of the refac-
toring.

A refactoring can simply be ‘rolled back’ when the developers dis-
cover they’ve decided on a totally wrong refactoring route.

While this option initially sounds quite attractive, it also harbors a
couple of disadvantages:

Developers involved in the refactoring are forced to switch
between two different versions of the system if they continue to
work on it after the implementation of a refactoring increment, or
after integration of a new feature to further the refactoring. This
switching between contexts is difficult and can delay a large refac-
toring.

If the large refactoring is integrated in the current system, a sub-
stantial demand for merges is created, because the system develop-
ment has advanced. Depending on how strong the refactoring’s
impact on the system is, the merge demands can be rather high.
The further the refactoring progresses, the higher these merge
demands will become. One of the major risks of such a proceeding
is that a refactoring that has been in progress for a long time will
no longer be integrated due to the high merge demand, and thus
will eventually be discarded.

4.2 Best Practices for Large Refactorings

111 I

As the case may be, a merging of the current system version and
the large refactoring can take a relatively long time. During that
time, the whole system is no longer runnable. The more time devel-
opers need for the merging, the higher is the risk for the entire team
of creating a not fully runnable system.

Once the refactoring has been fully integrated in the system, the
developers who are not directly involved in the refactoring work
have to familiarize themselves with the new system, because a lot
of code may have changed literally from one day to another.

Our experiences made us realize that separate branches are better
suited for larger refactoring projects when the changes brought about
by that refactoring can be restricted to a part of the system. This is the
case, for instance, if a large refactoring only affects the implementation
of a fraction of the system. Here, it is important to observe that the
interface to other parts of the system remains unchanged. In the ideal
case the respective part of the system can be replaced with the modi-
fied version — as long as its functionality hasn’t been altered during
refactoring. If this part has been changed, these changes must be inte-
grated in the refactored version, but the merge demand will be limited.

Eclipse Runtime: An Example

In the course of the Eclipse project, an alternative Runtime has been
developed as part of the work on the software’s version 3.0. The new
runtime was developed parallel to the scheduled development of
Eclipse version 3.0. Halfway between Milestone M5 and Mé, the old
Eclipse Runtime was replaced with the new Equinox Runtime. This
was accomplished with minimal effort, because the runtime is accessed
by other parts of the system via a fixed interface. In order to ensure an
even smoother transition, the developers of Equinox Runtime attached
great importance to making sure that compatibility with the old inter-
face was guaranteed.

112 4 Large Refactorings
Fig. 4-1
Exchanging Eclipse old
Runtime Eclipse
Runtime
Eclipse M6
Equinox
Runtime
Y z
Eclip§e
nti
rd T
Eclipse M6
Equinox
Runtime

Even though the new Eclipse Runtime is a new feature rather than a
refactoring of the old Runtime, this example demonstrates that the
part of the system that shall be modified can be particularly well devel-
oped in a separate branch and merged later on, when only implemen-
tations are modified

Unfortunately, large refactorings are not exclusively limited to
implementations of system fractions. This seems logical if the refactor-
ing shall improve the system’s structure in a significant part of the sys-
tem. For such modifications, the disadvantages of the branching
approach clearly outweigh the advantages. Under these circumstances,
we therefore prefer the integration of large refactorings in the normal
development process.

4.2 Best Practices for Large Refactorings

113|

4.2,7 Practice: Acceptance Tests

Problem

In our introduction to the refactoring topic we learned that tests and
refactorings are inseparable. Refactorings can only be carried out
securely when a good test coverage is guaranteed. Of course, a good
test coverage is also one of the prerequisites for the success of large
refactorings.

Nevertheless, large refactorings do not only require various modi-
fications of the program code, but also modifications of the test code.
The effort for the large refactoring will diminish if one occasionally
throws away the odd test and executes a new implementation after
refactoring.

A similar approach seems to have been chosen by the developers of
the C3 project. On the Wiki web, Chet Hendrickson writes:

“About every 3 or 4 iterations we do a refactoring that causes us
to toss or otherwise radically modify a group of classes. The tests will
either go away or be changed to reflect the classes’ new behavior. We
are constantly splitting classes up and moving bebavior around. This
may or may not affect the UnitTests.”

This is why the traditional unit tests no longer offer a stable frame-
work for large refactorings. In each individual case the developers
must decide what a unit test failure during a large refactoring means.
Was the last refactoring step faulty, or does the test have to be adapted
or deleted?

Solution

Automated acceptance tests (as well as function tests) will prove useful
here. They will check the system’s behavior from the users’ point of
view, whereas unit tests check the functionality of single classes from
the developers’ point of view. Thus modifications of unit tests are
often needed during refactorings. Changes to acceptance tests are only
permissible to a very limited extent though, because otherwise the
refactoring would alter the observable system behavior, not just the
internal program structure. Let us resume: in the course of large refac-
torings, modifications of unit tests are allowed, but modifications of
acceptance tests are not.

For automated acceptance tests, FIT or Fitnesse can be used quite
elegantly (see References). Both tools read tests from HTML tables,
conduct tests on the application level and document the results in

Experiences from the
C3 Project

Automated Acceptance

Tests

114

4 Large Refactorings

Fig. 4-2
Acceptance Tests with
FIT/ Fitnesse

HTML. At the same time, the test results are connected with the appli-
cation via fixtures. The fixtures receive their input values from the
HTML tables. With these values, they then call system functions and
return their function results. TestRunner compares the return values to
the expected values based on the test specifications, and again the
result is documented. This process is visualized in Figure 4-2:

-

6: Compare
function results
to expected values

e

2: Call fixtures
with tests’
input values

TestRunner

=
2

5: Returned
function results |

| e

1: Read

test specs |
v

Test N Test

" Application
Specifications Results Obi
ject
(HTML) (HTML) I

4.2.8 Practice: Detours

» 4: Returned

functions function results

7: Record test results ‘ 3: Call the application’s

W
—

Problem

If changes to vital parts of the system are required (e.g. renaming of a
vital method), many dependent parts of the system must be adapted as
well. During this transition period, the system will neither be com-
pilable nor runnable. Since it is desirable to have a runnable version of
the system in the central source code repository, changes can only be
integrated when they are complete and the system is runnable again.

Because these changes are rather time-consuming, considerable
merge requirements may follow in their wake. Moreover, only after
the refactoring is complete, tests can be run to determine if the refac-
toring process was executed correctly and the system is indeed opera-
tional. If the system does not run correctly, it will be very difficult to
identify the one error or the errors. In principle, any class that’s been
changed in the course of the refactoring could be responsible for its
misbehavior.

4.2 Best Practices for Large Refactorings

115|

Solution

In order to break down a large refactoring in small increments, detours
are built into the code (analogue to the detours for basic refactorings if
they are executed stepwise). At the end of a refactoring, these detours
must be removed from the code. If the developers additionally inte-
grate single steps of their large refactoring into the shared code reposi-
tory, the detours that have been introduced into the code will also
become visible for other developers.

This leads to a situation that at first sight seems paradox: the
detours will first impair the system structure with the goal of eventu-
ally improving it. In many cases, the course of a more comprehensive
refactoring will look somewhat like this:

Design Improvement

Refactoring Steps

The graphic clearly illustrates that most steps of a large refactoring
will improve the software’s design and bring the developers closer to
the design they are targeting with their refactoring. However, develop-
ers will always have to deal with small steps actually leading in the
opposite direction. Usually these steps are identified as being wrong at
some point and corrected. However, it is important to recapitulate that
a large refactoring can, as a rule, not be planned 100 per cent, from
start to end.

Based on the aforementioned observation, we pointed out that sin-
gle steps of a refactoring might turn out to be wrong. Moreover, in the
course of a large refactoring, developers may find out that an entirely
different refactoring route would have been preferable.

Fig. 4-3
One Step Back, Two
Forward

116

4 Large Refactorings

Example: Detours in the Code

The simple refactoring for renaming a method is — unless this is done
automatically by an IDE - a good example of such a detour. Let us
assume that the following method print shall be renamed printDocu-
ment:

public void print (Document obj) {

implementation of print

In a first step we create a new method with the desired name and move
the implementation of print. We will get:

public void print (Document obj) {
this.printDocument (obj) ;
}
public void printDocument (Document ob7j) {
implementation of print
}
In our next step, we mark print as deprecated:
/ * *
* @deprecated use printDocument instead
*/

public void print (Document obj) {
this.printDocument (obj) ;

public void printDocument (Document obj) {
implementation of print

In the next step, we can by and by adjust all places in the code that
until now used print. In these places we are simply going to exchange
the call print with the call printDocument.

4.2 Best Practices for Large Refactorings

117|

Once all calls have been replaced, the old method can be deleted. It
served as a detour for as long as we weren’t able to use the new
method consistently. During this transitional phase, two versions of
the print method existed simultaneously. The system’s structure was
worse than before in this period. Only after the refactoring was com-
plete, the old method was deleted and a better system structure
emerged.

4,29 Practice: Errors and Warnings as To-do Lists

Problem

Large refactorings harbor the danger of getting lost in minute details.
With each step, the number of compile errors grows, and it becomes
more and more difficult to integrate a completely functional version of
the system into the shared repository.

We want to be able break down even extremely large refactorings
in such small increments that a functional system is guaranteed after
each implementation step. We will adhere to this goal even if a large
refactoring is carried out in a branch.

Deprecated warnings are a popular way of implementing stepwise
changes. The old method or class is marked deprecated, and the com-
piler highlights all sections of the code which still bear references to the
element marked deprecated. The purpose of this mechanism is an
incremental transition of the marked references from the old structure
or method to the new one. It is easily possible though that the sections
marked deprecated in the source code cannot be arranged in any
desired order. If, for example, a class with Inline Class is removed, all
references to this class must be replaced with references to the new
class. Should a method call another method while simultaneously
committing an object of the old class, the calling class must be modi-
fied first and generate an object of the old class prior to the other
method’s call. If the method of the called class is changed first, the call-
ing method must be adapted as well, because it will expect a parameter
of the new class’s type. Regarding the calling method, the question
arises from where it should get the new class’s object. The calling
method can no longer simply generate the object because it may need
to contain more information than the fields of the class to be deleted.

Solution

Do large refactorings in a way that:

118

4 Large Refactorings

A Consistent Number

of Compile Errors

No Specific Order for
Deprecated Warnings

Continuous

Integration

Structure and
Behavior Conflicts

Modifications of the
Type Hierarchy

Additional Problems
through Overloading

Relocating Methods

After each refactoring step, a consistent number of compile errors
shall occur. This particularly means that the number of compile
errors shall not correlate with the size of the respective system, but
exclusively with that of the refactoring step. Thus the single steps
of a large refactoring can be carried out in as little time as possible.
We will often work with deprecated warnings in order to execute
successive refactorings. It must be irrelevant in which order depre-
cated warnings are processed because otherwise it will become
very hard to determine their correct sequence in large systems.
Some system cycles might even prevent a stepwise processing of the
deprecated warnings. Moreover arbitrary removal of deprecated
warnings significantly simplifies planning and — last, but not least —
allows the team parallel removal of deprecated warnings.

The single refactoring steps shall leave the system runnable, so that
integration is possible on a daily basis.

Behavior Conflicts

If we change the type structure of a class hierarchy or single classes of
the system, different kinds of conflicts can arise. On one hand, struc-
ture or type conflicts, which are noticed by the compiler, can occur. An
example hereof are polymorphic assignments. On the other hand,
behavior conflicts that will not be found by the compiler can emerge.
For instance, this is the case when methods inside the inheritance hier-
archy get overloaded, or when the type is checked via instanceof, and,
as the case may be, a downcast takes place.

Modifications of the type hierarchy are extremely problematic.
They must be thoroughly analyzed and planned. Choosing the
right refactoring route is of utmost importance. Even the renaming
of a class within a hierarchy can lead to difficulties if it is not auto-
mated by the IDE.

The overloading of methods in an inheritance hierarchy can lead to
unsolicited behavioral changes during large refactorings. For
instance, if we change a method’s signature, a number of problems
will follow in the wake of this change: if the original method over-
wrote a method from the superclass, this must not necessarily be
the case with the changed method. The opposite can also occur: a
changed method in its new version unintentionally overwrites a
method from one of the superclasses.

The relocation of a method to a superclass can cause difficulties
when the same method already exists in the superclass, but with a
different kind of implementation. This raises the question if the

4.2 Best Practices for Large Refactorings

119|

implementation can also be adopted in the superclass. If not, the
method cannot simply be moved to the superclass.

4.2.10 Inline Method

Problem

During stepwise refactorings, in most cases old and new structures will
exist side by side for a limited time. The old structures are marked with
the deprecated tag. This procedure primarily serves to track references
to the old structure and incrementally remove it. In a Java environ-
ment this is particularly easy to do, because the compiler lists refer-
ences to deprecated classes and methods with corresponding warnings.

Developers will often proceed to search all references for the dep-
recated class or method and adjust the according code to the new
method or class. For a very comprehensive system this can cause a lot
of work.

Solution

In an article for the XP-2003 conference, Tammo Freese suggests using
the inline method refactoring in such a refactoring process. The basic
idea is an implementation of the method marked deprecated based on
the new method. The next step is to disperse the deprecated method
via inline method.

Let us look at a brief example: We wish to replace the method
print with printDocument. For this purpose, we already marked the
old method print as deprecated and moved its implementation into the
new method printDocument.

/**
* (@deprecated use printDocument instead
*/

public void print (String doc) {
printDocument (new Document (doc)) ;

public void printDocument (Document obj) {
implementation

}

Now, we will find several calls of the old method print in our system’s
source code, for example:

Example

120

4 Large Refactorings

Using Inline Method
for Large Refactorings

Limitations

String myDocument = ...;

myPrinter.print (myDocument) ;

If we proceed to conduct an inline method refactoring of the method
print with the aid of the correlating IDE, all calls of the old methods
will be replaced by its implementation. Cleverly, we implemented the
old method in such a way that it simply calls the new method (while
converting parameters or return types, if these have changed, where
applicable). Thus, after inline method refactoring, the reference to the
old method will be directly replaced by a call of the new method:

String myDocument = ...;

myPrinter.printDocument (
new Document (myDocument)) ;

In his article, Freese takes this approach even further and shows how
refactorings can also be used for APIs. For the large refactorings we
are surveying in this chapter, the simple handling of the case described
here will be sufficient in most situations. The inline method refactoring
lets us elegantly alter those incidents in the code that call deprecated
methods. Since for an inline method refactoring it doesn’t matter how
many occurrences in the code must be modified, this refactoring is very
helpful in the restructuring of big systems.

Of course the inline method refactoring will work only if the old
method, marked deprecated, can be implemented based on the new
method. Should it not be feasible to move the implementation into the
new method because both implementations are needed, an inline
method refactoring does not make sense.

The example we just gave also shows that the inline method refac-
toring can in some cases introduce exactly the kind of ‘pollution’ that
was supposed to be eradicated by the new method (here the use of the
string instead of the class Document), to the calls.

4.3 Fragments of Large Refactorings

After we have discussed organizational and development process-relevant
aspects of large refactorings, we will now deal with functional patterns that
can help us with our large refactoring work. However, we must admit that

4.3 Fragments of Large Refactorings

121|

the field of large refactorings is of yet very young. Therefore, we are unable
to provide a catalogue similar to Fowler’s refactoring catalogue (see
[Fowler 99]). It may well be possible that there are too many variations of
large refactorings to allow the creation of a refactoring catalogue.

Nevertheless, we would like to take a first step towards creating a refac-
toring catalogue and present fragments of large refactorings. In the last
chapter, we saw that architecture smells accumulate in relationships
between classes, packages, subsystems and layers: often lumps must be dis-
entangled.

A project-specific analysis of what refactoring route makes sense to
remove an existing architecture smell is required. In these refactoring
routes, certain fragments will recur.

43.1 Moving Classes

It is amazing how many architecture smells can be eliminated by simply
moving classes. Often cycles between packages, subsystems and layers do
not imply the existence of cycles between classes.

Customer Order
Bestseller Product
Customer Order
Product Bestseller

One should be careful though not to make the mistake of moving classes
around without heeding their meaning, before all cycles have been eradi-
cated. If single packages, subsystems or layers lose their [internal coher-
ence], the damage will be greater than the benefit.

In Java, the moving of a class usually means that the class is put into a
new package. Since the package name is part of the [fully qualified] name
of the class, moving means first merely changing the name of the class. In

Fig. 4-4
Moving Classes

122

4 Large Refactorings

the case of Java, it should be taken into account that package-wide visibility
is given (protected modifier or leaving out package visibility). Thus moving
a class into another package could cause visibility problems.

The single steps for moving a class or an interface are:

1. If the class or the interface are merely visible package-wide: Set
class/interface to public.

2. Set all attributes and methods in the class/the interface that are visi-
ble package-wide to public.

3. For all attributes and methods that are protected, check if they are
used via classes/interfaces of the same package. Also, set attributes
and methods to which this applies to public, too.

4. Change the package of the class/the interface.

If you are dealing with a development environment that offers
refactoring support or a refactoring browser, consider yourself
lucky. It will allow you to alter the package name automatically.
Should there be no support available for automatically changing
package names, this process will be quite arduous. This is because
the package name of a class cannot be changed in small steps; just
as this is impossible for renaming a class (the reason why [Fowler
99] does not offer a refactoring labeled rename class).

In this case, you’ll have to swallow the bitter pill: Change the pack-
age of the class/interface and then — one by one — fix all error mes-
sages. You can either do that in a branch, or you commit the class
with a new package name. Afterwards all developers have to adapt
all references in a single, concerted effort.

The renaming of a class with IDE support can be made easier if you use the
following little trick: Instead of renaming the class directly, introduce a new
class with the respective name. The old class’s method declarations are cop-
ied into the new class and a delegation will be implemented. To this end, an
object of the new class must be referenced to an object of the old class, and
a temporary cyclic uses relation between the old and the new class be intro-
duced. This uses relation enables skipping between types within the system.
It is indispensable to generate a new type for each object of an old type (and
vice versa). Thus, all references to the old class can be adapted to the new
class step by step.

This approach will be problematic though if the class to be renamed
possesses subclasses, because subclasses can either only inherit from the
old class or from the new class.

4.3 Fragments of Large Refactorings

123|

4.3.2 Introducing an Dependency Graph Facade

In order to structure dependencies between packages, subsystems and layers
it can be useful to hide a number of classes behind a facade. Whereas in
[Gamma et al. 94] facades are employed to simplify the handling of multi-
ple classes, we can also use a facade to hide a subsystem’s dependency
graphs from the client of that subsystem. This allows easier modifications of
relations between single classes within that subsystem without having these
modifications affect the subsystem’s clients.

In the context of the refactoring described here, we assume that the cli-
ent only depends on the class graph via uses, but not via inheritance. If
inheritance relations exist, these must first be removed, for example by
replacing them with uses relations.

L

‘ Client % Facade

We proceed on the assumption that the client requests all objects to be
encapsulated directly or indirectly from a root object. This means that the
client uses the class of the root object as well as those classes used by the
root object via getMethods. This situation can easily emerge if the ‘Tell
don’t ask’ principle has been violated.

The facade can be introduced in the following steps:

1. Create the facade class, which will generate a root class object in
the constructor. The facade class contains the same constructors as

Fig. 4-5
Introducing a Facade

124

4 Large Refactorings

a

the root class. Add a method to the facade class that can request the
encapsulated obj ectl.

. For each method that calls a client on the root class, create an iden-

tical method in the facade class. The methods in the facade class
call the respective methods in the root class.

Step by step, change all instantiations of the root class to the facade
class. Then directly invoke the encapsulated root object on the fa-
cade object and proceed to work with the latter.

Delay the calling of the root object incrementally and change the
method calls from the root object to the facade object. Proceed step-
wise. Depending on the circumstances, it might be possible to ease
the search for method calls that must be altered by temporarily set-
ting the root class methods to deprecated. Add a comment to the
source code stating that the deprecated tags are only transitional.
Otherwise, some over-eager colleagues of yours might accidentally
delete them.

. Proceed similar to step 4 with all objects that are directly or indi-

rectly referenced to the root class.

Remove the temporary deprecated tags.

If applicable, reduce the visibility of the root class to the package,
so that the class can only be accessed indirectly via the facade.

The introduction of a facade resembles the ‘Hide Delegate’ refactoring
described in [Fowler 99], pp. 157.

4.3.3

Moving a Class within the Inheritance Hierarchy

Errors in inheritance hierarchies emerge very fast during development.
They can have quite unpleasant consequences. The system gets flooded

with instanceof type checks. The inheritance hierarchy will become difficult
to understand and to extend. The desired flexibility through polymorphy
becomes a source of errors.

Therefore, classes must frequently be moved within the inheritance
hierarchy (see Figure 4-6).

1. We assume that the root class itself is not going to be used as a facade here to
affect its interface as little as possible.

4.3 Fragments of Large Refactorings 125 |

- Fig. 4-6
List Moving a Class in an
Z} Inheritance Hierarchy

UnsortedList

!

SortedList

L

List

\ |
UnsortedList SortedList

Modifications of the inheritance hierarchy are problematic, particularly the
moving of classes within an inheritance hierarchy. The resulting problems
and type errors of polymorphic assignments are often not curable in a step-
by-step revision. The complete system will only be flawlessly compilable
when all type errors have been erased.

The following single steps can at least contribute to alleviating this
problem:

1. To move a class within an inheritance hierarchy, first create a new
class in the selected place.

2. Copy the old class’s implementation into the new class.

3. Set the old class to deprecated.

4. Work off the deprecated warnings and step by step adapt all occur-
rences of the old class in the code .

5. Once the old class is no longer in use, it can be deleted.

To support step 4 in a more elegant fashion, we would like to see the com- Setting Inheritance
piler alerting us to all polymorphic assignments of the old class as well as Relations to deprecated
their superclasses. Instead of setting the old class to deprecated, we’d rather
mark the inheritance relation between the old class and its superclass as dep-
recated. The compiler should then issue warnings to indicate where the
obsolete inheritance hierarchy is still in use. This is, for example, the case
with polymorphic assignments.
We have implemented an Eclipse plug-in as a prototype function-
ality in the course of the JMigrator project (see [JMigrator 04]).

126 4 Large Refactorings
Adapters Ease the In addition, an adapter construct can help to simplify the transition from
Refactoring Process the old subclass to the new one. The trick is to introduce a temporary uses
relation between the old and the new subclass. A method getOld that is also
temporary can request an according object of the old subclass from an
object of the new one. At runtime, there will always be an object of the new
subclass and an object of the old subclass as a pair, and the new subclass
delegates its methods to the old subclass.
Fig. 4-7 List
Temporary Uses))
+add(in o : Object)
Relation between +getSize() : int
SortedList and +get(in index : int) : Object
OldSortedList Z}

UnsortedList SortedList
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(in index : int) : Object +get(in index : int) : Object

+ insertAt(in index : int, in o : Object)

+setComparator(in ¢ : Comparator)

-OtdSortedtist—

+add(in o : Object)

+getSize() : int

+get(in index : int) : Object

— tRdex——t—ie-—Ob

b ALl

£
U

+setComparator(in ¢ : Comparator)

If a class has until now used the old subclass OldSortedList, the method can
be adapted to SortedList in a rather segregated manner. If an invoked
method still expects an object from the old subclass, the respective object
can be requested from OldSortedList via getOld and passed on to the calling
method. The opposite proceeding is also feasible.

Comparisons can be problematic if you use the adapter solution. Natu-
rally, the methods equals and hashCode must be implemented in Java in
such a way that the old object and new object are identical. If you check for
identity in the system using ==, disparity between the old and the new
object will be stated. For each single occurrence, you must decide whether
this behavior is desired or not.

Since == does not constitute a method, it is usually not possible in
development environments to get a report of all occurrences in the source
code where objects of a type are compared to ==.

4.3 Fragments of Large Refactorings

127|

4.3.4 Changing Class Inheritance to Interface

Inheritance couples classes more strongly than the implementation of inter-
faces. Whereas in inheritance relations between classes the subclasses must
on principle know the superclass’s supervisory data flow, this is not the case
for the implementation of interfaces. After all, an interface alone will not
implement a supervisory data flow. Of course a class that implements an
interface must often know in which context the single interface methods are
called by clients. All in all, the dependency is expressed more explicitly
though.

Of course inheritance between classes continues to be useful. When
dealing with inheritance between classes from different subsystems, you
should check if it isn’t smarter to have the subsystem define an interface via
the superclass.

Client

L

«Interface»
A B
Client

For this refactoring, you will have to execute the following steps (see also
Figure 4-9):

1. Create an interface B with all methods from A.

2. Let interface B implement all subclasses of A that are located out-
side this subsystem:

3. Step by step, add default implementations from B’s methods to each
client which has not yet implemented them. The default implemen-

Fig. 4-8
Changing Class
Inheritance to Interface

128

4 Large Refactorings

Fig. 4-9
The Single Steps of the
Refactoring

tations must display the same behavior as those methods of the
same name in A.

4. Adapt A incrementally in such a manner that instead of hook meth-
ods, methods from B will be called. This will temporarily create a
situation in which A will know the clients via inheritance and use
them at runtime (step 3 in Figure 4-9).

5. If A does no longer call any methods on itself which may have rede-
fined clients, delete inheritance relations between the clients and A.

6. In the second step, the new methods of the clients have been imple-
mented in such a way that they adopted the behavior of A’s methods
of the same name. This may have created redundancies that can be
removed by placing the redundant implementations in a help class.

@

«Interface»
:
A
Client @

iRee]

Interface «Interface»
‘ ¢ B > ﬁ> B

The switching from class inheritance to interfaces is a typical step to be exe-
cuted when a white box framework is further developed into a black box
framework (see [Foote & Opdyke 95]).

4.3.5 The Classic Removing of Cycles

Software engineering knows a classic, universal procedure for removing
cycles between two artifacts A and B. To this end, B is split into two seg-
ments B1 and B2, so that B1 is used by A and B2 uses A. Depending on the
situation, either B1 and B2 are independent from each other, or B2 must use
B1 (see Fig. 4-10, here the variant on the left hand side). The opposite case
— having B1 using B2 — would be a mistake in the selection of B1 and B2.
Then A would again be part of a cycle (A->B1->B2->A, see Figure 4-
10, the variant on the right).

4.3 Fragments of Large Refactorings

129|

4
Bt
1

It is also thinkable that a cyclic dependency exists between B1 and B2.
Then the procedure depicted here must also be applied to B1 and B2.
In this way, the cycles can iteratively be made smaller and smaller until

A B
] B1
A FX
B2 L B2

they eventually disappear altogether (see Figure 4-11).

A B
¢
——— B1
A L

B2

4

B1

—

[

B2a

B2b

This method can be used to remove cycles between classes, packages,

subsystems or layers.

The previously described moving of classes works like the proce-
dure depicted here, if the moved class is delegated to a new package or

subsystem.

The procedure presented here will work universally, but without
utilizing the possibilities object-orientation offers: The removing of
cycles with DIP (see next section) utilizes the inheritance relation for
the removal of cycles. This method will often let you remove cycles

between classes in a smart fashion.

Fig. 4-10
A General Procedure for
Removing Cycles

Fig. 4-11
Iterative Removing of
Cycles

130 4 Large Refactorings

43.6 Removing Class Cycles with DIP
Cycles between two classes A and B can be removed in an elegant man-
ner when DIP (Dependency Inversion Principle, see [Martin 97]) is
used. For this purpose, we introduce a new interface that contains all
methods that A calls on B. A only knows the interface that is imple-
mented by B (see Figure 4-12).

Fig. 4-12

Removing Class Cycles “—“

with DIP

«Interface»

Bl

If you compare Figure 4-12 with the structure depicted in Figure 4-10,
it becomes obvious that the dependency relations turn out to be identi-
cal after restructuring. Only the nature of B2’s dependency from B1
will have changed.

This refactoring requires the following proceeding;:

1. Extract interface BI from class B. The interface must contain
all methods of B that are needed by A. B implements BI.

2. In A, set all references that are not required for object genera-
tion from B to BI.

3. If references exist in A for the generation of B, introduce a
plug-in (see next section).

You will experience the limitations of this refactoring when A does not
only use class B, but also generates instances of B. After all, A cannot
generate instances of the newly introduced interface BI. Clearly, the
generation must be relegated from A. This can happen if, for example,
the client of A generates instances of B and passes them on to A. Alter-
natively, you can introduce plug-ins (see next section).

4.3.7 Introducing a Plug-in

It is possible to use interfaces to reduce couplings — particularly
between subsystems. A client will then no longer directly use a certain
class, but only an interface. Thus it is feasible to use any classes at
runtime, as long as these classes implement the used interface.

4.3 Fragments of Large Refactorings

131|

However, this does not answer the question of where the objects
implementing the interface come from. If the client itself generates the
objects, it must know the concrete classes for their generation. On top
of everything, the client must also implement the case statement which

serves to determine from which class the object shall be generated.

One solution to this problem can be found in the plug-in pattern
(see [Fowler 03], pp. 499). The interface defines an extension point
into which plug-ins — the classes implementing the interface — can be
plugged. To enable the plug-in’s integration into the system with as lit-
tle effort as possible, the classes are registered in a PluginRegistry.
Objects of the plug-in classes can be generated using the PluginRegis-

try (see Figure 4-13).

«Interface»
IdGenerator

IdGenerator gen;
if IN_MEMORY_COUNTER)
gen = new InMemoryCounter();

InMe‘m ory

Dbld

Counter Generator

else
gen = new DbldGenerator();

&

«Interface»

CIieLt

IdGenerator

InMe‘m ory

Dbld

Counter Generator

PluginRegistry

getPlugin(Class type):Object

The following single steps must be taken for this refactoring:

1. Search for all references to those classes that implement the in-
terface. Replace all references that are not used for object gen-
eration with the interface. If the interface does not provide a

required method, pull it up into the interface.

2. Program the class PluginRegistry. The PluginRegistry will be
parameterized with information that allows you to find the
suitable class for a requested interface. Alternatively, the Plug-
inRegistry itself can get the needed information (for example

from a property file).

Fig. 4-13
Introducing a Plug-in

132

4 Large Refactorings

3. Search for all remaining references to the concrete classes that
implement the interface. These references can only be object
generations, since all other references have been eliminated in
the first step. Replace these generations with calls of the Plug-
inRegistry’s generation method.

4. To prevent the direct instantiation of subclasses in the future, it
is in many cases advisable to set the subclasses or at least their
constructors to package-wide visibility. It is recommended that
you place the interface, the PluginRegistry and the classes im-
plementing the interface in the same package.

The development of plug-ins is a logical consequence of DIP (Depen-
dency Inversion Principle). They also facilitate the reduction of depen-
dencies during object generation (see also [Fowler 04]).

Today, the plug-in concept is discussed in various literary sources.
Besides Fowler, Evans describes a similar design for domain modelling
with his Pluggable Component Framework (see [Evans 03], pp. 475).

The Eclipse development environment offers a plug-in model that
enables third-party vendors to expand the development environment
by their own plug-ins (see [Bolour 03], [Daum 03]). The Eclipse devel-
opment environment itself is based on plug-ins. Therefore, it is possi-
ble to use the Eclipse plug-in mechanism without the development
environment for application development. The developers of Eclipse
used this ability to build the Eclipse Rich Client Platform for applica-
tion development.

Excursion: Refactorings are the Work of Human Beings

A contribution by Dierk Konig, Canoo Engineering AG
(dierk.koenig@canoo.com)

In dealing with refactorings, organizational and functional aspects
must be observed. These can be described by scrutinizing the pro-
cesses and tools that are involved. This is the objectively comprehen-
sible side of refactoring processes.

Moreover, there is another side that is much more elusive: this is
the part concerned with the people involved and their interactions®.
This is the area that I will try to chart here, and I am going to intro-
duce an explanatory framework which helped me at least to find
some direction.

4.3 Fragments of Large Refactorings

133|

In the year 2003, we conducted a nice project: about 7 develop-
ers dealt with web technology and a strong database component for
more than 5 months. On the agile practice side, we had soon
installed automated testing, continuous integration, brief release
cycles as well as incremental/iterative development. We could coop-
erate locally and also were in close proximity to our customer. Pair-
ing took place only in part. And the scheduling procedure was an
entirely different story...

The ‘basic’ refactorings didn’t pose a problem. Thanks to the
support of conventional tools, only a few errors occurred. Those
were recognized and intercepted by functional tests. Typical error
sources were the symbolic references in Struts/JSP.

We even managed to get a grip on the ‘common’ database refac-
torings including adjustments to the schematics. Here, the first
human aspect came into play: All of us had to simultaneously work
on the same database instance, and we constantly stepped on each
others toes. This fact continued to get on our nerves until at last one
developer took the initiative and
— without it being scheduled — extended the database abstraction
layer in such a way that everyone could ‘virtually’ use their own
database instanceP. Time needed: about half a day.

Now we were able to completely erase our own databases prior
to each test run, newly construct the schematics and populate them
with data. Afterwards, this part ran smoothly.

In the middle of the third iteration, things started to become crit-
ical...

Our database abstraction layer and our entire shared work on
the code base — our architecture, if you will — became increasingly
unclear. Our developer with the strongest knack for architecture
took on the task of changing that, saying he wished “to clean up
here”.

This task had a clear-cut, functional aspect, the usefulness of
which was unquestioned. But our developer decided to tackle
another aspect that was more about how ‘one’ can solve such a prob-
lem ‘correctly’ and ‘elegantly’.

134

4 Large Refactorings

Our efforts to solve the problem dragged along. For many days
no commit would be entered into the repository. A week passed. A
second week went by. The developer didn’t explicitly refuse pairing
offers, but he clearly preferred to work alone. He was also against
committing intermediary increments that weren’t ‘perfect’ yet. Team
members piped up: “What is he actually doing there?”, “Do we
really need this?” and so on.

He repeatedly had to interrupt his work to provide support in his
field of specialization. This led to further delays.

To keep up with team’s progress, he had to increase his synchro-
nization efforts®.

In the end, the required integration demand was extremely high
by our standards.

We all acknowledged that the new solution actually was an
improvement. However, we regretted that it had arrived so late it
could no longer be fully effective, and that it had cost so much pre-
cious project time.

Non-one was really happy with that large refactoring. The solu-
tion was not ‘perfect’ yet. The effort that had gone into it wasn’t jus-
tified by the result. Spirits were low. Should we have opted for
another architecture right from the start? Should we have done with-
out the refactoring altogether? Both seemed wrong alternatives to us.

We certainly would have gotten a better result if we had been
able to read this book before taking on that project. Then we would
have had:

the whole team plan the large refactoring; and
conducted it in pairs; and
realized it in small increments.

However, the question of how we could have dealt with different ten-
dencies in the team remains: Is efficiency more important (‘good
enough’ and quickly developed), or perfection (the only way to do it
‘right’). What is valid? What is better?

I am not able to take sides with one party. Both are right. In my
view, a fifty-fifty compromise is not an adequate solution here.
Instead, I tried to look at the positions from a systemic standpoint.

4.3 Fragments of Large Refactorings

135|

F 9
Y

Efficiency Perfection

‘Ugly’ Solution Waste of Resources

This is a development and value diagram according to [Schulz von

Thun 89].

The arrows in this diagram are pivotal. The diagonal arrows repre-
sent fears and (possibly unspoken) accusations:

One should keep in mind that “fear and aspiration are siamese
twins”. [Schulz von Thun 89]

This recognition forms the basis for a development approach that
unites the striving for perfection with the striving for efficiency.

Development and Value Diagram

Efficiency is a value, and it is good to achieve it. Let’s say: E rep-
resents this value.

Perfection is also a value, and it is good to achieve this value too.
Let’s say: P represents this value.

If you overdo your striving for efficiency, you will obtain a solu-
tion that is ‘ugly’.

If you overdo your striving for perfection, you will waste
resources.

P accuses E of building ‘unclean solutions,” having no sense of
quality etc. At the same time, P is afraid of being reproached for
the same things.

Vice versa, E accuses P of wasting resources. On the other hand,
E fears that he could face the same accusations.

P would like to be as efficient as E, if he could only maintain his
quality level at the same time.

E would like to be as perfect as P, if this were possible without
losing time.

136

4 Large Refactorings

This approach does not imply that you do less of what you think
is important. It is about uniting one’s own position with the other’s
point of view, so that you - speaking in terms of our diagram -
‘develop upwards’.

How can this be accomplished?

Sometimes it is enough to let all team members participate in the
creation of the development and value diagram, to let them find their
own solution. If no solution is found, here are a few suggestions:

The advice to take small steps is backed up by another argument:
small steps lead to an added value within a short time, and this
will appease E. Smaller tasks can be handled more easily in suffi-
cient quality. This will alleviate P’s fears.

The team’s ‘Go!’ in favor of a refactoring usually diminishes the
risk of accusations.

E and P team up in a pair for the refactoring to keep each other in
line. This is not possible if both — which is often the case — have
problems on the relationship level. Such problems must be settled
first. “[The] technology [group] (detached, controlling, bent on
proving themselves and aggressive-debasing) [has] to learn most
in this scenario: Used to operating argumentatively and solution-
oriented on the content level, they will often oscillate between
exaggerated distancing themselves from others, dogmatism, help-
lessness and aggression on the relationship level.” [Schulz von
Thun 89], p. 248.

A coach can help to hear voices coming from the lower corners of
the diagram, to put them into perspective and offer possible sup-
plementing values. Typical phrases are: “let’s finish it quickly
before...”, “only this one here” and on the other end “one”,

» <« » <

“correctly”, “elegant”, “architecture” etc.

As our project’s coach, I wasn’t as successful with this approach as I
would have liked to. As far as I can judge, I could contribute to fos-
tering the mutual understanding and appreciation between those
involved, but their actual behavior did not change visibly for the
short term.

Mutual respect is the basis for each progress in a dialogue. Once
Kent Beck and I had a long e-mail discussion with differing opinions.
He finally replied: “Progress comes from the disagreement of
friends.” There is a whole world of meaning summed up in this one
sentence.

4.3 Fragments of Large Refactorings

137|

What is valid for a team can also be valid for a single person.
Friedemann Schulz von Thun explains in his book the analogy
between a team that consists of various persons and the various
‘voices,” that are united inside a single person (see [Schulz von Thun
98]). He calls this phenomenon “the inner team”.

Whenever 1 am facing a refactoring, I can feel the dispute
between E and P in myself. At best, a programming partner will be at
my side, with whom I can discuss openly to resolve stalemate situa-
tions. At worst, I will reproach myself until I have a bad conscience
or until I suppress any thought of either E or P.

If the previously described model finds your favor, you can find
an even wider field for its application, for example:

To counteract the fear of an unnoticed introduction of mistakes
through refactorings and of ‘encrusted’ code;

To counteract project-bureaucracy (fear of loss of control) and
hacking (fear of loss of freedom);

To obtain a concrete, detailed view of the code, e.g. through unit
tests that deliver fast feedback and an abstract, architectural view
— for example with the aid of Sotographd

Etc.

Where do I stand in this system if I either adamantly refuse to apply
Big Design Upfront, the Life Cycle model, or MS project charts, or if
I think that they are indispensable?

a. The Agile Manifesto: “...people and interactions over pro-
cesses and tools...”.

b. Realized with conventions for the table names.

c. Merging of the HEAD with its branch.

d. Icall it “programming distance”.

138

4 Large Refactorings

Excursion: Sustainable Architecture

A contribution by Klaus Marquardt, marquardt@acm.org

Redesign

You may be familiar with the following situation because of your
own, painful experiences: A project has been finished, but with a lot
of stress for all involved. Many goals have been reached, but the
more experienced developers are left with a very bad feeling: They
know that the code basis will continue to exist, but on the way to the
last milestones, too much of the originally wanted structure has been
changed and undermined by faulty, half-hearted solutions. They’ll
walk up to their boss or customer and ask for two team months to
carry out a ‘redesign,’ i.e. to ‘clean up’ — and they won’t get permis-
sion to do so.

When I assume the customer’s position, I can perfectly under-
stand this decision. The project came dangerously close to failing,
now it’s time for it to make money. If I were in the customer’s posi-
tion, I wouldn’t allow any further budgeting without seeing clear cut
advantages for my business either. What value can an investor possi-
bly gain from a struggling team that even admits to working sloppily,
if not even new functions are being added?

Dependency Management

There are projects where the software’s internal structure directly
serves to achieve business success. I will use the project Olymp? as an
example here: Olymp is a plug-in architecture® for the software of a
family of medical devices. The basis of all these devices forms a
framework for shared functions and abstractions. Via this frame-
work, specific domain components (applications) are implemented
as plug-ins. Products are created by ‘plugging together’ various
applications with as little integration effort as possible. The software
required for integration is also realized as a plug-in.

4.3 Fragments of Large Refactorings

139|

This architecture suits the underlying organizational structure
very well. Each department can manifest its specialized knowledge in
an application software. Each single department is responsible for its
software. Each product has a definite source, which is also responsi-
ble for production, marketing and customer relations. However, all
applications profit from the extension of the framework, and all
products will potentially profit from powerful applications. The
architecture enables parallel development as well as congruency of
tasks and competencies; the placing of functions rather ‘low’ in this
building set system increases their reusability and also fosters a uni-
form exposure of the products to and behavior in the market.

On this level, the architecture of Olymp consists almost entirely
of the definition of responsibilities, dependencies and their manage-
ment. All further technology and complexity are secondary to these
aspects. This level directly supports the organization and its internal
business model. Thus the existence and maintenance of the architec-
ture makes sense. Refactorings that serve to maintain the structure or
increase its reuse will be actively supported by the investor.

Recognition

Each of these different plug-ins contributes to a series of layers,
among others, data, rules, algorithms, displays and operating ele-
ments. This view builds orthogonally on the separation of single
plug-ins. In its entirety, the structure of the whole software is almost
ideal for a static analysis. As a matter of fact, I built a kind of soft-
ware tomograph for my own purposes and used it to analyze the sys-
tem in rather long intervals. Due to system’s clear organizational
structure, I was very rarely surprised.

If T feel that dependency structures are important, these viola-
tions will document a communication problem. Violations that are
discovered in the course of formal checks are always found too late,
and pointing them out will only be partially convincing. This is why
I always perceived the use of these tools as a last resort which would
offer me an apparently objective justification for my goals.

It is much more difficult to assess if a class or a package have
been assigned to the correct unit regarding its task. I have yet not
come up with an idea for an automated test for this purpose. Instead,
I made the question what would be the right location into a standard
issue in design reviews. For each possible placement, I worked out
criteria and defined a specific order stating which unit should prefer-
ably contain classes.

140

4 Large Refactorings

Relocation within the logical structure frequently occurred in the
course of the project. It was suitably infamous, and eventually it was
dubbed ‘Cat-Ball’“. Relocation wishes stated in the design reviews
were not always popular, but for the sake of the greater good they
were accepted and the refactorings executed.

No Change Without Suffering

Actually, several projects are part of the Olymp architecture: one for
each plug-in. The plug-ins in turn contain subprojects, because these
usually comprise code for various processors and embedded systems.
In such a complex system, it is hard to make progress, especially dur-
ing the early learning phases, because each change caused by a refac-
toring has political consequences. To reach easier controllability and
escalation paths, the first of these projects were united under a com-
mon management. For some projects, this would happen by and by.

Nevertheless, fundamental changes concern many places in the
code of various sub-projects. In most cases, the developers that are
involved perceive refactorings as disturbances of their routine — after
all, their own code works well, and they will not experience any
improvements that concern them. This perception goes as far as hav-
ing an imaginary barbed wire fence run around one’s ‘own’ field of
work; a fence that has even been established by the immediate
project manager. Our motto for compromises made under a common
project management was: Those who want to bring about change
must suffer. The person who carries out a refactoring is also respon-
sible for modifying the entire code of all affected plug-ins right away
and for getting the refactoring to run properly.

In spite of this at the first glance frightening prospect, this pro-
ceeding has proven to work well in the Olymp project. It reduced the
developers’ fear of interferences, because no-one could be accused of
having introduced thoughtless and arbitrary changes. At the same
time, the path was cleared for really important changes. We decided
we would (and wanted to) do without aids such as deprecated tags.
Last but not least, deprecated means that we are dealing with a
‘slow’ refactoring — one that has been partly put off to maintain com-
patibility. Such careful approach was not necessary for a clear-cut,
comprehensive project under common management. The prerequi-
sites for our approach were a certain amount of shared code owner-
ship, continuous integration, automated build & test, active support
by the version control system, as well as a team with a common goal.

4.3 Fragments of Large Refactorings

141|

Inside the Booth

Developments and modifications that cannot be completed in the
course of a few days or that require the combination of various
expert competencies are separated from the normal development
process and relegated to a booth. A booth is a separate branch of the
version control system that is being run parallel to the main develop-
ment process. As a rule, each developer (or pair of developers) will
have their own branch and deliver their results into the integration
stream. Here, a baseline will be drawn every couple of hours or days.
Prior to delivery, each developer must synchronize with the latest
baseline and carry out the required mergesd. This leads to pressure in
exactly the right place: Synchronization with colleagues can be timed
individually, but those who neglect synchronization for a longer
period will eventually have a lot to catch up with. However, it is
important that the decision when to synchronize can be made indi-
vidually and is thus able to suit each project situation as well as each
work style.

Bigger refactorings, like those that concern an API and several
components, can even take a couple of weeks. Afterwards, the col-
leagues in the booth must merge a lot — unless they had the foresight
to regularly synchronize with the current stage of integration during
this period. This synchronization cannot only affect the main branch,
but also occur inside the booth.

The booth creates a setting which makes sure that customers
who use a component or interface will not notice the modifications
that are going on, nor are they forced to make the necessary adjust-
ments themselves. Instead, they can go through with their original
plan. As long as all projects and partial projects can be handled as a
unit, no compatible interface must be serviced.

Active, But Patient Waiting

Once the software architect working with such a system has com-
pleted the preparatory work of creating a fitting structure and
mutual understanding and has established an adequate work pro-
cess, he can lean back and relax a bit. Further interventions are not
productive as long as the developers are coping well — on the con-
trary, it is more likely that they would evoke defensive reactions from
the developers. Nevertheless, the architect must be alert at all times
and respond at once when problems or irregularities emerge.

142

4 Large Refactorings

This status quo reminds us of the work technique that is occa-
sionally dubbed ‘active, but patient waiting’ in the medical profes-
sion®. It is a matter of one’s personal experience to keep the balance
between waiting and intervening and to recognize when threshold
values have been reached.

Many aspects that an architect must consider in the course of the
project can wait until the right moment for dealing with them has
arrived. I like to document the points of recognition when these
moments have arrived in the form of diagnoses and the according
remedies as therapies. The advantage of this description method is
that very different solution strategies from different points of view
that are all valuable on their level of application (technological, pro-
cess-oriented and that of human interaction) are all summarized in
one place. Similar to a doctor of human medicine, a software archi-
tect can treat problems solely based on their symptoms or try to find
the cause of these symptoms. He or she can work in an exclusively
technical way or choose a holistic approach. Some of the smells in

this books are also depicted as diagnoses'.

Sustainable Architecture

The blend of a decent technical solution, two-way adaptations of
both architecture and organizational structure, compliance of tech-
nology and a process that heeds the developers’ pace, the architect’s
attitude, as well as farsighted concepts for handling the software’s
entire lifecycle — all these aspects account for a sustainable architec-
ture in my opinion. Such an architecture meets today’s needs without
existing at the expense of future releases or the developers.

Depicted in [Marquardt & Volter 03].

See [Marquardt 99].

Derived from the tossing of a category.

This is the typical mode of work under ClearCase UCM.
Thanks to Dr. Kerstin Marquardt for this verbalization.
See [Marquardt 01].

o a0 o

4.4 Example: Lists

Let us take a look at an example to illustrate the discussions in this
chapter. This example is similar to a real-life large refactoring in one of
our projects.

4.4 Example: Lists

143|

4.4.1 The Starting Point

Initially, a system contains a class List to allow the saving of objects in
lists. During development, it turns out that a sorted list is also
required. Its behavior is very similar to that of the already existent
class List. Consequently, we will derive SortedList from List (see Fig-
ure 4-14).

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object]

SortedList
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object
+setComparator(in ¢ : Comparator)

Naturally, very rarely one will implement one’s own list classes. There
is no need to, because the required container classes are provided by
standard libraries for all popular programming languages. List classes
are well-suited for our example though, because they are easy to
understand. The problems we depicted in the List class example also
recur in domain-specific classes. We, too had trouble cracking these
nuts. We had the following experience:

System development proceeds and the method insertAt¢ is intro-
duced to the class List (see Figure 4-15).

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)

SortedList
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)
+setComparator(in ¢ : Comparator)

In practice, it can take a lot of time until somebody realizes that the
design is somewhat crooked: insertAt is meaningless in SortedList,
since the sort sequence specifies its position. As there is no reasonable

Fig. 4-14
List and SortedList

Fig. 4-15
insertAt in List

144 4 Large Refactorings
way of not inheriting methods from superclasses, something must be
wrong with the inheritance hierarchy. The inheritance hierarchy
though can effortlessly be corrected by introducing another class
labeled UnsortedList, which contains the method insertAt (see Figure
4-16).
Fig.4-16
insertAtin
UnsortedList List
+add(in 0 - Object)
+getSize() : int
+get(inindex : int) : Object]
UnsortedList SortedList
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(inindex : int) : Object +get(in index : int) : Object]
+insertAt(in index : int, in o : Object)
Getting there is not quite that simple, because the classes List and Sor-
edList are already being used all over the system. In one project, we
were facing a related problem and chose the following approach.
4.4.2 TheFirst Approach
The class List is renamed UnsortedList to emphasize the problem in
the inheritance hierarchy (see Figure 4-17).
Fig. 4-17
. L UnsortedList
Renaming Listin - -
. +add(in o : Object)
UnsortedList

+getSize() : int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)

T

SortedList
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)
+setComparator(in ¢ : Comparator)

Now the new class List is introduced as the superclass of Unsort-

edList. List receives the common methods add, getSize and get (see
Figure 4-18).

4.4 Example: Lists

145|

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object

UnsortedList
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)

T

SortedList

+add(in o : Object)

+getSize() : int

+get(in index : int) : Object
+insertAt(in index : int, in o : Object)
+setComparator(in ¢ : Comparator)

Positive is the fact that until now the changes of the inheritance hierar-
chy took place mainly locally. Only the renaming affected other parts
of the system. Since most development environments carry out
renamings automatically and adjusts all references, no significant
effort on our side was required.

The next step will be to move the class UnsortedList within the inher-
itance hierarchy (see Figure 4-19).

List List
+add(in o : Object) +add(in o : Cbject)
+getSize() - int +getSize() : int
+get(inindex : int) : Cbjec] +gef(inindex: int) : Object
UnsortedList
+add(in o : Object)
+getSize() : irt |;‘>

+gef(inindex: int) : Object
+insertAt(inindex : int, ino : Object

P

Sortedlist Ureortodist SortedList

+acti(ino: Qjed) ino: Object +add(in o : Object)

) S).

oo - hed. +gei(inindex: i) : Chject +get(inindex: i) : Object
sertAlfini aah'c;'”o-oqq) +insertAl(inindex: it,ino: Objedf [#setComperator(in ¢ Comperaor)

Fig. 4-18
New Superclass List

Fig. 4-19
Correct Insertion of
UnsortedList

146

4 Large Refactorings

The Drama Unfolds

The class UnsortedList is moved in a split second. And now the drama
unfolds: we get pelted with hundreds of error messages. Soon enough,
the reason becomes clear: some hundred or thousand times we find
method declarations of the following sort:

public void doSomething (UnsortedList list)

Originally, the parameter type List was in this place, but now it’s been
changed to UnsortedList in the course of renaming the classes. Not
only unsorted, but also sorted lists were generated in the system. The
latter create type problems:

SortedList list = new SortedList();

doSomething (list); // here the typo occurs

So, what can be done now? The initial impulse is certainly to swallow
this bitter pill and eradicate the type errors one after another. Unfortu-
nately this means that no compilable system state will be available for
quite some time. Depending on the number of occurrences that need to
be corrected, it might take unacceptably long for all errors to be elimi-
nated.

Actually, things can even get worse, because faulty inheritance
hierarchies are often accompanied by very unpleasant long-term con-
sequences. The inheritance hierarchy will be straightened out in the cli-
ent code; usually with direct type queries (instanceof) and downcasts.

Most likely, our project example will present us code of the follow-
ing kind:

public void doSomething (UnsortedList list) {
if (list instanceof SortedList) {
SortedList sl = (SortedList) 1list;
sl.setComparator (comp) ;
}
doSomethingElse (list) ;
}

However, we do remember that the parameter type was originally
called List, and the method implementation did not always look so
devastated.

Of course another type error arises here. The compiler knows that
UnsortedList cannot be casted after SortedList. After all, UnsortedList
is no longer a superclass of SortedList.

4.4 Example: Lists

It is obvious how the method is supposed to look like instead. For-

tunately, we did correct the parameter of doSomethingElse before-
hand.

public void doSomething (SortedList sl) {
sl.setComparator (comp) ;
doSomethingElse (sl);
}
Now, the whole matter is getting weird: two type errors have disap-
peared because the initially protested call and the invalid cast were
corrected. Instead, ten brand-new type errors have popped up. All of a
sudden, new portions of the code show type errors. A closer look
reveals code like this one:

UnsortedList list = new UnsortedList () ;
doSomething (list) ;

Wait a second — what is going on here? doSomething always used to
work with sorted lists, although this could not be deduced from the
method declaration. Now, this must be some glitch: due to the if-con-
struct in the original method implementation of doSomething, the
method call was without effect. Accordingly, it seems safe to delete the
doSomething call in this instance. If we weren’t so busy eliminating all
those type errors, we could run our tests now. And they would clearly
prove that our assumption of a useless method call is wrong. There
was a trick hidden in the original implementation of doSomething: the
method basically executed doSomethingElse — for the sorted as well as
for the unsorted lists. Only if a method with a sorted listed was called
as a parameter, the comparator would produce a certain sort sequence.

Thus we find ourselves in a major chaos with our refactoring. The
only means of escape from this scenario seems to be this one: We’ll
throw away our entire refactoring work, retrieve the latest working
version from the version control system and start over with a different
strategy. Admittedly, this is a worse idea than it appears to be at first
sight, because we have not only carried out the refactoring in a single
branch of the system, but also integrated at least its first steps into the
shared repository. This means that all developers have to return to the
last status quo prior to refactoring. Thus a couple of man weeks or
even months can easily be completely lost. Alternatively, one can try to
reverse the commenced refactoring step by step or execute it in a
branch, but the latter procedure is not without its drawbacks either.
We will come back to the discussion of branches later on.

Starting All Over

148

4 Large Refactorings

Fig. 4-20
Start and Goal of the
Refactoring

Step 1

Perhaps you’ll first deem the representation of this refactoring
somewhat hypothetical. Who would assemble such a messed-up sys-
tem without noticing it? We have actually repeatedly seen such sys-
tems. Especially during long-term projects unspeakable accumulations
of oddities appear to be the rule rather than the exception.

Interruptions of Large Refactorings

We already talked about how large refactorings can be broken down
in small increments. Furthermore, large refactorings often cannot be
completed within in a short time frame. A development team will need
several days or even weeks until the whole large refactoring is finished.

In many projects, the developers do not have the option of dedicat-
ing several days or even weeks exclusively to one large refactoring. At
the same time, the software system’s development is supposed to
progress as well. To enable this, developers will put down the large
refactoring after a few steps have been carried out and continue with
another task (e.g. work on a new feature). Normally, they will resume
the refactoring at a later date.

443 The Second Approach

Let’s have another look at our list example. How should we have exe-
cuted it otherwise to successfully circumvent the cited pitfalls?

List List
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(inindex : int) : Object +get(inindex : int) : Object|
+insertAt(in index : int, in o : Object

=)

SortedList
+add(in o : Object)
+getSize() : int
+get(inindex : int) : Object
+insertAt(in index : int, in o : Object
+setComparator(in ¢ : Comparator)|

SortedList
+add(in o : Object)
+getSize() : int
+get(inindex: int) : Object
+setComparator(in ¢ : Comparator)

UnsortedList
+add(in o : Object)
+getSized) int
+get(in index : int) : Object
+insertAt(in index : int, in o : Object)

In our first attempt, we argued that List actually is an unsorted list and
renamed the class. Then we extracted a new superclass List.

Now we’ll assume a slightly different perspective and argue that
there is nothing wrong with the class List. Only the method insertAt
has no business in this particular class. We set the method to depre-
cated. In our next step, we generate a new subclass of List that we

4.4 Example: Lists

149|

label UnsortedList. The implementation of the insertAt method is cop-
ied to UnsortedList. We will get:

List
+add(in o : Object)
+getSize() : int
+get(in index : int) : Object

~

UnsortedList SortedList
+add(in o : Object) +add(in o : Object)
+getSize() : int +getSize() : int
+get(in index : int) : Object +get(in index : int) : Object
+insertAt(in index : int, in o : Object) +setComparator(in ¢ : Comparator)

In our first step, we followed the advice not to move classes inside
inheritance hierarchies, but to expand the hierarchy instead by creat-
ing new classes. Immediately, we can see one positive effect of our
action: We didn’t get any compile errors. In their place we merely
received a number of deprecated warnings. They point to uses of the
method insertAt under the type List in our system.

Step by step, we can now analyze the calls of List.insertAt and
adapt them to UnsortedList.insertAt. This process can be quite time-
consuming, if the method insertAt is called on the type List. However,
it doesn’t matter in which order the deprecated warnings are pro-
cessed.

Let us take a closer look at various code sections in the system that
use insertAt. These sections reveal to us how these sections of the code
can be rearranged.

Replacing insertAt with add

The simplest option is to substitute the insertAt call with the call add.
This is only feasible though if it doesn’t matter in which position the
new object is inserted.

public void whatever (List list) {

list.insertAt (O, myobject);
}

... becomes ...

Fig. 4-21
Step 1: New Subclass
UnsortedList

Step 2

150

4 Large Refactorings

public void whatever (List list) {

list.add (myobject) ;
}

Adapting Parameter Types

Naturally, we cannot replace all calls of insertAt with add calls. If we
did this, we could delete the method insertAs altogether from List.
Therefore, we will again use a method that calls insertAr and gets an
object of the type List as parameter:

public void something (List list) {

list.insertAt (i, myobject);
}

For this method, the method insertA# is called on purpose to allow
insertion of the object myObject in a certain position in the list. This
means that in the future the method will no longer get an object of the
List type, but one of the type Unsorted List instead. We want the
method something to look like this:

public void something (UnsortedList list) {

list.insertAt (i, myobject);
}

If we change the parameter type of this method in a single step to
UnsortedList though, it is very likely that we will be confronted with a
multitude of compile errors, because the method is still used in its old
version in some places in the system. For instance:

public void uselist () {
List list = new List();

something (list) ;
}
Or:

public void uselist (List list) {

something (list) ;

}

4.4 Example: Lists

151|

Now, we actually need to adapt all these references to our recently

altered method something to make the system compilable again. How-

ever, such proceeding is against both the principle of taking many

small steps rather than a single big one and the principle of adhering to

a consistent number of compile errors. So what can we do instead?
Let us recall what our method looks like:

public void something (List 1list) {

list.insertAt (i, myobject);
}

As an alternative to simply changing the parameter type to Unsort-
edList, we will create a new method with the parameter UnsortedList
and proceed to copy the old implementation.

public void something (List list) {

list.insertAt (i, myobject);
}

public void something (UnsortedList list) {

list.insertAt (i, myobject);
}

Initially, the new method is not going to change the system’s behavior,
because the methods are bound to the parameters via static types. It is
only applied where the new type UnsortedList is also already being
used, which suits us just fine here.

Now we only have to set the old something method to deprecated
and incrementally adapt its references to the new method.

/**
* @deprecated
*/
public void something (List list) {

list.insertAt (i, myobject);
}

public void something (UnsortedList list) {

list.insertAt (i, myobject);
}

152

4 Large Refactorings

Step 3

instanceof

In the section about the first refactoring route the following piece of
code gave us quite a headache:

public void doSomething (List list) {
if (list instanceof SortedList) {
SortedList sl = (SortedList) list;
sl.setComparator (comp) ;

}
doSomethingElse (list) ;

}

The new refactoring route has rendered the same code less critical. As
long as the method doSomethingElse continues to expect an object of
the type List as parameter, the method can remain as it is. If doSome-
thingElse is adapted to require a parameter of the type UnsortedList,
the method doSomething must be duplicated as well.

Once we have removed all calls of deprecated methods, we can fin-
ish the refactoring in a third step. To this end, we must merely remove
those methods that are obsolete and marked deprecated.

4.5 References

[Bolour 03] Azad Bolour: Notes on the Eclipse Plug-in Architecture.
http://www.eclipse.org/articles/Article-Plug-in-architec-
ture/plugin_architecture.html, 2003.

Article about the Eclipse plug-in model.

[Coplien & Schmidt 95] J. O. Coplien, D. C. Schmidt: Pattern Lan-
guages of Program Design. Addison-Wesley. Reading, Massachu-
setts, 1995.

Contains many important articles about software architectures and
patterns.

[Daum 03] B. Daum: Java-Entwicklung mit Eclipse 2. dpunkt.verlag,
Heidelberg, 2003.

This book discusses the Eclipse development environment and how
one can program one’s own plug-ins for Eclipse.

[Eclipse 04] http://www.eclipse.org, 2004.

Website focusing on the open source development environment
Eclipse. Here you can download Eclipse itself. You will also find
documentations about various aspects of Eclipse.

4.5 References 153 I

[Evans 03] Eric Evans: Domain Driven Design. Addison-Wesley,
2003.

This excellent book discusses domain driven design. For the con-
text of this chapter, the Pluggable Component Framework is rele-
vant. (See pp. 475).

[FIT] http://fit.c2.com

FIT is a tool for conducting automated acceptance tests (including
function tests). The tests are specified via HTML tables (e.g. for
tables containing input values and expected output values for spe-
cific system functions), which are executed by a test runner. Using
fixtures, the test runner binds the application to be tested to the
tables containing the tests. In turn, the test results are documented
in HTML pages.

[Fitnesse] http://www.fitnesse.org

Fitnesse is based on [FIT]. In addition to FIT, it also offers a Wiki
web which allows easier specification and organization of tests.

[Foote & Opdyke 95] B. Foote, W. E. Opdyke: Lifecycle and Refactor-
ing Patterns That Support Evolution and Reuse. In: [Coplien &
Schmidt 957, pp. 239-257.

Groundwork article about frameworks.

[Fowler 99] Martin Fowler: Refactoring - Improving the Design of
Existing Code, Addison-Wesley, 1999.

This standard work on refactorings contains a chapter about big
refactorings that belong in the category of the large refactorings
addressed in this chapter of our book. Fowler describes big refac-
torings as significant and recurring refactorings. Moreover, four
typical larger refactorings are explained, but there is no informa-
tion whatsoever available how large refactorings should be treated
in general.

[Fowler 03] Martin Fowler: Patterns of Enterprise Application Archi-
tecture. Addison-Wesley, 2003.

Contains many important design patterns for the programming of
comprebensive business applications, also the plug-in pattern
(among others).

154 4 Large Refactorings

[Fowler 04] Martin Fowler: Inversion of Control Containers and the
Dependency Injection pattern. http://martinfowler.com/arti-
cles/injection.html, 2004.

Here, Fowler focuses on the inversion of control containers and
discusses several approaches to the generation of plug-ins.

[Freese 03] Tammo Freese: Inline Method Considered Helpful: An
Approach to Interface Evolution, in: Michele Marchesi, Giancarlo
Succi (eds.) Proceedings of the 4th International Conference on
Extreme Programming and Agile Processes in Software Engineer-

ing, XP 2004, Genova, Italy, Springer LNCS 2675, 2003.

In this article, Freese depicts how the Inline Method Refactoring
can be used to enable a stepwise evolution of interfaces. In our
book, we are using a simplified variety of that technique to resolve
deprecated methods.

[Gamma et al. 94] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides: Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

The design pattern bible. Also contains the facade pattern.

[Hoffman 03] Michael A. Hoffman: Automated Impact Analysis of
Object-Oriented Software Systems, in OOPSLA 2003 Companion,
ACM press, 2003.

In this extension of his abstract, Hoffman writes about a tool that
allows the conduction of several types of impact analyses. Particu-
larly interesting is the predictive impact analysis option to antici-
pate the impact of changes.

[JMigrator 04] http://sourceforge.net/projects/jmigrator, 2004.

JMigrator is an open source project that provides support for mod-
ifications to subsystem APIs. Parts of its functionality can be uti-
lized for large refactorings, e.g. for the detection of polymorphic
assignments. JMigrator is realized as an Eclipse plug-in. At press
time of this book, JMigrator is still in an early stage of develop-
ment.

[Lippert 04] Martin Lippert: Towards a Proper Integration of Large
Refactorings in Agile Software Development. In Proceedings of XP
2004 International Conference on Extreme Programming and
Agile Processes in Software Engineering, Springer LNCS, 2004.

4.5 References

155|

This XP-2004 conference contribution elaborates on the problems
of large refactorings in an agile development process. It focuses on
the organizational aspects and obstacles and suggests the use of
refactoring plans.

[Marquardt 99] Klaus Marquardt: Patterns for Plug-Ins. In: Proceed-
ings of the Fourth European Conference on Pattern Languages of
Programming and Computing (EuroPLoP 1999). Paul Dyson,
Martine Devos (eds.). Universitats-Verlag Konstanz, 2001.

This article describes typical patterns of a plug-in architecture and
offers a number of patterns. In addition to patterns on the architec-
tural level, it contains patterns for organizational and process-
related issues and scrutinizes some design decisions.

[Marquardt 01] Klaus Marquardt: Dependency Structures. Architec-
tural Diagnoses and Therapies. In: Proceedings of the Sixth Euro-
pean Conference on Pattern Languages of Programming and Com-
puting (EuroPLoP 2001). Andreas Riiping, Jutta Eckstein, Christa
Schwanninger (eds.). Universitits-Verlag Konstanz, 2002.

In this article, a series of bad smells is portrayed in the shape of
diagnoses and therapies. The collection of diagnoses primarily
refers to architectural aspects and offers a series of possible thera-
pies for each smell that will belp to cure it.

[Marquardt & Volter 03] Klaus Marquardt, Markus Volter: Plug-Ins
- Applikationsspezifische Erweiterungen. In: JavaSpektrum
2/2003. Available online at:
http://www.sigs-datacom.de/sd/publica-

tions/pub_article_show.htm?&AID=1117& TABLE=sd_article

The functional concepts of plug-in architectures are introduced in
this source and compared to those of other component architec-
tures. The main topic is the impact of a plug-in architecture and
related contract issues as well as a decision guidance, if this archi-
tecture type is useful for a specific project or not.

[Martin 97] Robert C. Martin: Stability. C++ Report, 1997

Even though this contribution is several years old, its content has
neither collected dust, nor is it C++-specific. In this article, DIP
(Dependency Inversion Principle) is also described.

[Schulz von Thun 98] Friedemann Schulz von Thun: Miteinander
reden. Vol. 2. Rowohlt Taschenbuch, 1998.

156

4 Large Refactorings

Volume Two of this bestselling series. How to develop a systemic
view of mutual restraints and vicious circles in communication.
Development and Value Diagram, personal ways of communica-
tion, approaches to communication improvement.

[Schulz von Thun 98] Friedemann Schulz von Thun: Miteinander

reden. Vol. 3. Rowohlt Taschenbuch, 1998.

Volume Three of this bestselling series. Analogies between teams
consisting of several persons and the inner team, the various voices
within one person. Work methods of these teams: side by side
(without contact), disordered (without structure), against each
other (restraining), with one another (fostering). How to remove
blockades, integration of all members, team development, coberent
presentation of the (inner) team to the external world.

157|

5 Refactoring of Relational
Databases

In application development, mostly relational databases are employed
nowadays. Other than object-oriented programming languages, rela-
tional databases hardly offer any options for building modules. There-
fore, there is no way of locally limiting the effect of changes to a single
module.

Changes to relational database schemas (e.g. removal of a foreign
key from a table) will often affect expansive areas of the schemas and
thus create a need for comprehensive adaptations of the program.

This chapter addresses what modifications of relational database
schemas occur, and how these can effectively be embedded in large
refactorings.

Modifications of relational database schemas and the required
work in their wake (program adaptations, data migration etc.) were
much discussed in the context of agile methods. This chapter will sur-
vey several of the discussion results, which means that the authors of
the concepts quoted here should be honored rather than us. We, the
authors of this book, merely assembled the information.

5.1 Differences between Databases and OO
Programming Languages

Before we get started, it is helpful to take a closer look at the differ-
ences between relational databases and object-oriented programming
languages:

The focus of relational databases is on the definition of data struc-
tures. Encapsulation through methods or the like is not allowed. In
consequence, data access cannot be sensibly restricted.

Tables are connected via foreign key relations. These links too can-
not be encapsulated.

5 Refactoring of Relational Databases

Data in databases is persistent and outlasts a program run. If the
database schema is altered, the data must migrate.

If more than one installation of the system exists (e.g. at different
customers), there will also be different databases. Should the data-
base schema be changed, the respective change must be made for
each installation and the data of each schema must migrate.
Different users can access data simultaneously, while conceptually
each single user has his or her own copy of the program.

Classes can inherit from each other; tables and data can’t.

Source code can be changed locally from the developers’ terminals
and tested prior to re-integration in the shared code repository.
Conflicts can be recognized and eradicated with the aid of power-
ful tools. In most projects, the database is run centrally for all
developers.

Source code can be managed with the support of version control
systems and administrated in variants. Database structures and
data can only be versioned with significantly greater effort.
Accessing data in the database takes a multiple of the time required
for accessing objects in the RAM.

The data structures in relational databases are shallow, whereas
they are deep and interlaced in OO systems.

5.2 Problems in the Interaction of Programs and
Database

The interaction of programs and database creates additional prob-
lems:

Program and database are often not coupled typesafe (as it hap-
pens to be the case with JDBC, for example). The compiler has no
means of assessing if program and database are structurally com-
patible. Suitable mapper classes or persistence layers will take the
problem elsewhere without solving it. Typesafety will be lost inside
the mapper classes or the persistency layer, not already outside.
Databases will ‘hide’ objects when in one place of the program
objects are written to the database and then read out somewhere
else. Thus objects can be exchanged between parts of the program
without this process becoming visible at the program’s interfaces.
Frequently, a 1:1 relation between classes and tables is assumed,
which is often not correct for data-intensive applications. Specifi-
cally for reading in objects from the database, several tables must
be joined, or certain views must be applied for performance rea-
sons. As a result, there is no simple way of determining which

5.3 Refactoring of Relational Database Schemas

159|

classes must be adapted in the course of database modifications.
Conversely, it is not always clear how changes of classes will affect
queries and views.

There is the odd case where a mapping between types in the data-
base and the primitive data types of the used programming lan-
guage will cause difficulties. For instance, the granularity of time
stamps (TIMESTAMP), floating point numbers of varying preci-
sion or strings of various character sets can deviate (milliseconds
versus nanoseconds).

In object-oriented systems, containment relations are modeled
based on the container (i.e. an account will know its balance). In
relational databases, 1:N relations are modeled precisely vice versa
(due to foreign key relations balances know to which account they
belong). This means that there is no predefined course of action for
a refactoring.

Thus we have to consider three major areas for refactoring:

1. Refactoring of the database schema/the data model.

2. Migration of data between different versions of the database
schema.

3. Refactoring of the database access code.

5.3 Refactoring of Relational Database Schemas

In practice, a number of database schemas will exist parallel. There are
at least two variations: one for the developers (the development data-
base), and one for users (the production database).

Thus developers can try out modifications of a database without
affecting the system’s users. Only when the changes to the database
have been thoroughly tested and adapted to the system on which the
database is built, the program and the new database schema will be
made available to users with the next release.

Moreover, each developer should have his or her own database
instance to be able to test changes to the database in isolation from the
rest of the team. The existence of several database instances makes the
migration of data between various types of database schemas a pivotal
topic. We are going to discuss this topic in the following section.

In many refactorings a central principle of a stepwise evolution of
programs as well as of data structures is recurring: old structures are
not immediately replaced with new ones. Instead, old and new struc-
tures will exist side by side for some time. The old structure will be
marked deprecated to keep new parts of the program from accessing
it. Then the existing programs are modified; step by step they will be

Development and

Production Database

One Database for

Each Developer

Refactoring a

Database Schema

5 Refactoring of Relational Databases

Fig. 5-1
Coexistence of Old and
New Fields in a Table

adapted from the old structure to the new one. Once this has been
accomplished, the old data structure will finally be deleted. Figure 5-1
shows the evolution of the table Customer. Initially, first and last name
were stored together in one field labeled Name. The two pieces of
information shall now be submitted to the fields First Name and Last
Name. To this end, both fields are added to the Namze field and the lat-
ter marked. After all programs have been adapted to use First Name
and Last Name, the Name field is deleted.

In its intermediate state, the table Customer contains redundant
information (Name). Either the application can ensure that the data
will be consistent, or the problem is solved with the support of suitable
triggers.

Customer Customer Customer
Number Number Number
Name Name
Last Name Last Name
First Name First Name
Street Street Street
Zip Code Zip Code Zip Code
Town | Town | Town

In Java, program elements can be marked obsolete with the deprecated
tag. In other programming languages as well as in the database field,
the search for an equivalent of this tag will be fruitless in most cases.

In the relational database field, columns, tables, views or even
entire schemas will be marked deprecated, depending on the refactor-
ing that is applied. How these elements are marked as being obsolete is
primarily determined by how the database is accessed. If, for example,
an OR mapping tool that generates Java access classes is used (such as
Apache’s Torque), the generated classes or single methods can simply
be marked deprecated — on the one condition that no other system
directly accesses the database. Figure 5-2 shows this proceeding. The
application does only access the database via mapper classes. There-
fore, it suffices to mark the access methods for the field Name as dep-
recated in the second version (crossed-out methods).

5.3 Refactoring of Relational Database Schemas

161|

CustomerMapper

+getNumber():int
+getName():String
+setName(String n)
+..

| CustomerMapper |

+getNumber():int
+oeiere S

+setMametSirie
+getFirstName():String
+getLastName():String
+setFirstName(String n)
+setLastName(String n)
+..

CustomerMapper

+getNumber():int
+getFirstName():String
+getLastName():String
+setFirstName(String f)
+setLastName (String 1)
+..

—

—

—

Customer Customer Customer
Number Number Number
Name Name
Last Name Last Name
First Name First Name
Street Street Street
Zip Code Zip Code Zip Code
Town Town Town

If access does not take place strictly channeled via specific access
classes, one usually will have to make do with conventions. One can
either maintain a list of all obsolete elements or add comments to the
elements that state that those elements are deprecated. Of course it is
important that all developers know the convention agreed upon and
observe it.

5.3.1 Database Refactorings

On his website, Ambler (see [Ambler 2003b]) has collected frequently
required refactorings for relational database schemas. The refactorings
depicted there are a useful reference source.

Ambler’s refactorings aim at improvements of database schemas.
Therefore, the addition of a column alone does not constitute a refac-
toring. The added column by itself will not improve the database
schema.

Database refactorings fall into various categories: refactorings that
will either improve the data quality, structure, performance, referential
data integrity, or the database architecture.

The descriptions of refactorings refer to the database structure.
The adaptation of programs or the migration of existing data is only
mentioned as a side note.

Fig. 5-2

A Database Access
Layer Makes the
Marking of Deprecated
Elements in Data

Structures Easier

|162

5 Refactoring of Relational Databases

The deprecated concept is also applied to database refactorings.
Since tables and columns cannot be marked as being deprecated in
relational databases, another way for communicating what is depre-
cated must be found (see previous page).

5.4 Migration of Data between Different Versions of a
Database Schema

As soon as the system has been released for users, a refactoring of the
database schema will no longer be sufficient. For instance, if a column
is moved from one table into another, this will be realized with SQL.
The column is deleted in the source table and newly generated in the
target table. As soon as the restructured system is released, we must
face the problem of migrating the data from the old to the new version
of the database schema. We will also have to observe how the selected
migration strategy impacts the database refactoring.

5.4.1 Versioning Database Schemas

Therefore, we need to migrate the existing data to the new schema
after the database schema has been changed. Of course the old and the
new schema need to exist side by side during migration. Only after
data migration has been completed, the old database schema can be
deleted.

The coexistence of two schema versions can be realized in different
ways. One option is to define a schema exclusively for the respective
version. The version number is then incorporated in the schema’s
name, i.e. schema V1, schema V2 etc.

Alternatively, the version number can also be incorporated in the
table name, e.g. Customer V1, Product V2, but this will also have con-
sequences for the refactoring of the database schema. After all, foreign
key relations, constraints, and triggers all contain references to the
tables’ names. Once a new version of a schema has been created, all
these references must be adjusted.

For this purpose, we assume that for each schema version a corre-
sponding database schema is created.

The schema name enables the application to identify in which ver-
sion the schema exists. This is an important prerequisite for the data
migration of software products that are used by numerous customers.
In such a scenario, one cannot take for granted that each customer
uses the most recent version of the system. Thus it should be possible
to migrate data from any older version to the newest one. To achieve

5.4 Migration of Data between Different Versions of a Database Schema

163|

this, one has to discern in which schema version the data originally
exists.

5.4.2 Connecting Migration Steps

As mentioned before, when developing software products for a greater
number of customers, it is not safe to expect that each customer uses
the most recent version of a system software. Customers are likely to
skip one or another version of the system.

Each migration transfers a database schema’s data into the new
version of that schema. This new version will be the starting point of
the next migration.

Consequently, the newly installed system version must determine
in which schema version the data is available and then proceed to
carry out all required migrations until the process is complete for the
youngest version. This presupposes that each installation must contain
all migration programs that were ever created. For very expansive sys-
tems which have been in use for a long time, this can pose a problem,
because very old migration programs might not work, for example,
with the current version of the operating system. In such cases, the sys-
tem must be broken down into generations and only deliver those
migration programs as part of the installation which belong to the
youngest generation.

The customer cannot expect that a migration from an older gener-
ation to the most recent one can be executed in a single step. If neces-
sary, several migration steps must be carried out.

Figure 5-3 illustrates the principle of connected migration. If
migration takes place from one version to the next, only one of the
migration programs MigA, MigB or MigC will be carried out. Should
migration happen from V2 to V4, the application system will first exe-
cute the migration program MigB and then MigC.

MigA m MigB ‘rﬂ MigC @

= = =

V1 V2 V3 V4 Time

Fig. 5-3
Connecting Migration
Steps

164

5 Refactoring of Relational Databases

Problem: Very Large

Amounts of Data

Organizational

Incorporation

Incremental Migration

Parallel Versions of
Database Schemas

Many Parallel
Versions of Database

Schemas

5.4.3 Migration of Very Large Data Amounts

When dealing with very large amounts of data, a single migration pro-
gram can cause time problems: the migration of one billion data sets is
hardly a feat that will be casually accomplished. Shutting down, for
example, the main system of a bank house or an insurance company
for 24 hours in the middle of the week to migrate their data is out of
the question.

However, this problem can be approached either from an organi-
zational or a technical perspective. For the organizational solution,
one has to precisely schedule modifications of the database system and
conduct the migration when there is enough time. The Christmas and
Easter holidays are ideal for this purpose.

If the overall technical conditions allow such a proceeding, the
migration can be executed incrementally. The data will be migrated
only when the system needs it. The migration period is thus prolonged,
but the system’s operation will not be interrupted. In a scenario with
strict 7x24 runtime requirements, an incremental migration is often
the only feasible solution.

One prerequisite for incremental migration is that the application
system is able to handle various versions of the database schema simul-
taneously. When accessing the database, the system must know in
which schema to find the required data. Altered data will always be
committed back to the new database schema though and then deleted
from the old one. Once the old schema does no longer contain any
data, it can be deleted.

If the incremental migration takes longer than one release cycle,
more than two variations of the database schema will exist at the same
time.

An elegant way of keeping data simultaneously in different data-
base schemas is to save the objects in BLOBs as well as fieldwise saving
(see 5.9).

5.4.4 Data Migration Techniques

ETL tools can greatly simplify data migration. ETL stands for Extract,
Transform, Load. ETL tools support the extraction of data from a
data source, transformation of that data, plus loading it to another
data storage. ETL tools are generally used to exchange data between
applications which are not integrated. This makes them important
tools in the EAI (Enterprise Application Integration) field.

Using ETL tools for data migration between different versions of
database schemas was originally only a by-product — as a matter of

5.5 Refactoring Database Access Codes

165|

fact, ETL tools have capabilities that go far beyond such application.
Unfortunately, herein also lies the main disadvantage in utilizing them
for data migration: they are very expensive. Buying them solely to deal
with typical migration tasks is often not worth the money.
Fortunately, a less costly ETL tool is available for each relational
database: SQL. With the help of SQL, data can easily be extracted
(SELECT) and reloaded into the database (INSERT, UPDATE). How-
ever, SQL does not offer any direct support for transformation tasks,
but often recoding tables or stored procedures will come in handy
here. In such recoding tables, source and target values are specified for
single fields. A problem-free migration of field contents is enabled by
the Insert-Select command. This course of action is recommended if
one decides to change the display of enumeration types. If a field was,
for instance, coded with the character M for ‘male’ and ‘F’ for ‘female’
and is now supposed to be displayed with the digits 0 for ‘male’ and 1
for ‘female,” we have an ideal area of application for a recoding table.
If more complicated data migrations are necessary, programs that
will carry out the data transfer must be written. Today, many data-
bases allow the running of Java programs directly in the database. This
can be beneficial for data migration, because the data no longer must
be transferred from the database server to the machine handling the
migration over the network. Thus migration can be noticeably sped

up.

5.5 Refactoring Database Access Codes

One of the oldest demands in software development is the call for
encapsulating database access in a database access layer. A database
access layer provides the option of exchanging the persistence
medium. The developers only have to adapt the database access layer
instead of rewriting the whole application system.

With agile methods and large refactorings, the demand for a data-
base access layer is supported by another argument: The effects of
changes to the database schema will be limited to the database access
layer. This is the only means of keeping the subsequently needed
efforts sufficiently small. Figure 5-4 shows the schematic architecture
of an application with a database access layer.

|166

5 Refactoring of Relational Databases

Fig. 5-4

Database Access Layer

Fig. 5-5
Dataflow of the
Database Connection

Redundant Structures

of Business Objects

Application

, Call

DB Access Layer
 Call

5.5.1 Synchronized Changing of the Database Schema and
Database Access Code

Generally speaking, application systems store data in databases to
read them out later on (see Figure 5-5).

Application
‘9&)
0, o

% 7

At least when integrating relational databases, structures that are in
part redundant will be created: the structures of business objects in the
application as well as in the database bear a strong resemblance to
each other. This is why usually both application and database must be
adapted in the course of refactorings of such business object struc-
tures.

This means there are four potential places that must be modified
during refactoring:

1. The portions of the database schema that are relevant for the
altered business object structure;

2. The classes that define the modified business object structure

in the application;

The database read-in operation for the business object;

4. The database write operation for the business object.

[S8)

5.5 Refactoring Database Access Codes

167|

In principle, the read and write operations addressing the business
objects can be arbitrarily distributed over the whole system. A well-
designed system will at least ensure that there is only one place in the
system where a business object is stored in the database. During read-
in from the database this is unfortunately not always possible, because
for performance reasons entire business object graphs are at once
loaded in the select instructions via joins.

The most common case for refactorings of business object struc-
tures is execution of the following procedure:

1. Changing the table in the database exclusively in increments:

New fields are added;

Fields to be deleted remain in the code and are marked dep-
recated,

Modified fields are duplicated; the old fields are marked
deprecated.

2. New fields in the database are assigned appropriate default
values.

3. Business objects classes are changed in such a manner that the
new data fields from the table can be stored in the business ob-
ject and values for the deprecated fields can still be delivered; if
necessary, the fields of the business object class must be set to
deprecated.

4. All database write operations must be extended by the option
to fill new fields.

5. All database read operations must be adapted to allow the
read-in of these new fields; all read access to deprecated fields
in the table must be eliminated.

6. All write access must be removed from deprecated fields.

Deprecated fields must be deleted from the table.

8. Deprecated fields must be deleted from the business object
class.

N

This procedure does not constitute a generic, universal solution. It
should specifically be amended for the respective refactoring.

Let us now assume that we wish add a new field for country codes
to the class Customer (so far, we only had German customers; now we
will deal with customers from all over the world). To this end, we will
first introduce the new field into the class Customer. Here it is assigned
the default value ‘G’ for Germany. As of yet, the field will not be saved
and loaded.

In the next step, the new field is added to the database schema, and
all existing data sets are assigned the default value ‘G’ for the new

Centralizing
Read/Write Access

A Simple Example

5 Refactoring of Relational Databases

A More Complex
Example

field. Now the loading of customers will be adapted, followed by sav-
ing. Finally the new field is made visible in the GUI.

Here is short version of each the single step:

1. Add a new field to the class and assign the default value.

2. Introduce a new field to the database schema and assign the
default value.

3. Enable loading of the new field.

4. Enable saving of the new field.

5. Make the new field visible in the GUI.

After each single step, the system is in a consistent state.! The desired
effect will be achieved with the last step. Until this step has been taken,
the system can only handle customers from Germany.

Not always are things so simple: Let us assume that we wish to
store the country code no longer as a character code, but as a number
instead. To realize this, the country code field must be changed from
the type String to Integer in the database as well as in the program
code. At the same time, the persistent data must be recoded.

The following refactoring steps will render the desired result:

1. Add a new field to the class and assign the default value.

2. Introduce a new field to the database schema and assign the
default value. Add the new field to saving.

3. Add the new field to loading.

Switch the GUI and all other access to the old field to the new

field.

Remove the old field from loading.

Remove the old field from saving.

Delete the old field from the class.

Delete the old field from the database schema.

>

® NN

Concerning points 1 and 2: Here a static default value cannot be
employed because the default value depends on the existing country
code. A recoding algorithm is required to calculate the numeric coun-
try codes for the existing string country codes. For this purpose, the
recoding algorithm will probably have to access a recoding table in the
database.

A closer look at the single steps makes it clear that the modifica-
tions for loading and saving cannot be finalized in one step. As a mat-
ter of fact, both parts of the system must be adapted several times.

Of course making the final adaptation in one step is extremely

seductive. If loading of the field in step 3 is removed at once, the sys-

1. Steps 1 and 2 as well as 3 and 4 can also be executed in reverse order.

5.6 Rolesin aProject

169|

tem initially appears to be in a consistent state (no compile errors will
be reported, and tests working with the new field will also run error-
free). Admittedly, after loading, the field in the objects would show a
default value that does not match the field’s new value. This constella-
tion can create all kinds of problems in the rest of the program code.

5.6 Rolesin aProject

In projects that use agile methods, the previously described database
refactorings and the procedures following in their wake (data migra-
tion) are the rule, not the exception. The whole procedure must be
organized without impairing its progress.

Foremost this means that the understanding of the DBA’s (data-
base administrator’s) role undergoes change. He or she will not per-
sonally make every single change to the database. This would encum-
ber the developers’ work and overburden them with the sheer number
of modification requests.

Instead, the DBA has to accept the role of the person who supports
the developers with changes to the databases. After all, he or she usu-
ally has a more detailed knowledge of it. As a side-effect, the DBA can
also keep track which modifications to the database are made and can
intervene, if — in his or her opinion — development takes a wrong turn.

This changed understanding of the DBA’s responsibilities will last
but not least be reflected in the allocation of rights. Developers in agile
projects need more database rights. At least for their local database
and the shared development database they must have the right to make
changes to the database schema. Modifications of other schemas can,
as before, be executed by the DBA, who will also function as a quality-
ensuring checkpoint.

5.7 Tools

Graphical administration tools are available for most database types.
Normally, they also allow changes of database structures. However,
these tools cannot be considered refactoring tools for databases. On
one hand, the effects of modifications are simply ignored, on the other
hand they don’t offer any mechanisms to take back changes or to ver-
sion them etc.

However, the majority of projects that apply refactorings will not
execute changes of the database schema with the aid of such tools.
Should no other tools be at the developers’ disposal, SQL scripts will
serve instead to realize modifications of the database schema. The

5 Refactoring of Relational Databases

scripts are versioned in the version control system. The gradual execu-
tion of these scripts enables migration of an database schema existing
in any version to any successive version. Thus, writing additional
migration programs for the migration of production databases will
often be unnecessary.

5.7.1 OR-Mapping

The mapping of objects to relational databases is supported by a vari-
ety of commercial and open source tools. For Java, often Torque, Cas-
tor, or Hibernate from the open source field as well as the commer-
cially available TopLink are used. With the introduction of JDO (Java
Data Objects), a standardized programming interface for such an OR
mapper in a Java environment has now also been defined. For the
future it is expected that the existing OR mappers will be able to sup-
port JDO.

Most OR mappers generate SQL scripts and source code for data-
base access from a description of persistent data structures. Rarely the
application developer will directly have to deal with SQL.

The source code generated in such a way constitutes a good basis
for the database access layer and significantly improves typesafety of
the database access. Access is not always 100% typesafe, because
direct changes of the generated classes or the database schema will
again result in a loss of typesafety. In addition, the formulation of que-
ries can lead to type errors.

Overall, the generated source code brings about a clear enhance-
ment of the situation compared to direct database access. In this way,
code-generating OR mappers support large refactorings in a minimal-
ist way: the effects of changes to persistent data structures will become
visible as soon as the OR mapping source code is newly generated. The
affected parts of the application will now display compile errors. We
are yet far away from having achieved a refactoring in small steps, let
alone an automation. The application developer must still ponder
which refactoring steps he or she wishes to take.

Equally, OR mappers are of little help for the migration of existing
data. Here again, the application developers must decide what is to be
done.

5.7.2 ETLTools

ETL tools (see also chapter 5.4.4) read out data from a data source,
transform this data and load the results into another data source. ETL

5.8 Tips

171|

tools are, for example, used in the EAI field (Enterprise Application
Integration) to synchronize the data of different applications.

A welcome side-effect is the usefulness of ETL tools for data
migration between different versions of a database schema. In compar-
ison with the writing of individual migration programs, the applica-
tion of ETL tools saves a lot of work. However, it should not go
unmentioned that the licensing costs for commercial ETL tools range
in the five-digit dollar zone. Many projects will discard such an invest-
ment that will ‘merely’ speed up development in a fringe area right
away.

Should ETL tool licences have been purchased for other reasons
though, their application is an extra benefit.

5.7.3 Scripting

If no ETL tool is at the developers’ disposal, most of the data migra-
tion for refactoring purposes should be done with scripts. After all, the
migration programs/scripts will be only used once for data migration
and then never again. Thus their maintenance requirements are not as
high as those for the actual production system.

5.8 Tips

Develop a database access layer that hides the database structures
completely from the application. As a result, modifications of the
database schema will be limited to the database and the database
access layer.

Define all table and column names as constants and use the con-
stants for database access. Typical OR mappers will generate the
constants from the description of persistent data structures. If no
OR mapper is at your disposal, write your own program to gener-
ate the constants from the database.

Adhere to the naming conventions for primary and foreign keys to
enable easier detection of dependencies in the database schema.
Use different database instances or at least different database sche-
mas for staging: Unit test DB per developer, DB for integration
testing, DB for acceptance testing, DB for production.

Do not use the database manufacturer’s tool to change the data-
base schema. Write SQL scripts instead for changing the schema.
Write the scripts in such a way that existing data can be migrated.
Developers can use these scripts to adopt modifications of the local
database instance to the development database, but also to migrate
the database schema and data from the production database.

5 Refactoring of Relational Databases

Apply the following strategy in regard to the database: make sure
that each database instance contains both an old and a new version
of the database schema. It is the only way of migrating the data
with minimal effort when switching the schema.

If you are using OR mappers, version the definition of persistent
data structures in the version control system.

If you are not using OR mappers, version the SQL scripts for creat-
ing and changing the database schemas in the version control sys-
tem. Alternatively, in many cases you can let the database itself
generate the description of its structure (SQL Create Statements)
and then version it.

Ensure that your source code stays independent from the concrete
data that is stored (i.e. it should not presuppose the existence, for
instance, of customer no. 999). Should this not be feasible, proceed
to make the dependency explicit, e.g. let the program verify the
existence of the required data at program start.

Unit tests should see to the existence of the required data them-
selves. They should either generate the data directly from the pro-
gram code or load it to the database, using a script. Then the script
must be versioned together with the source code.

More complex data models do not always permit that tests gener-
ate their required own data. Thus the tests will depend on data in
the database. In such cases, make sure that the tests will exclusively
depend on the data in the unit test database instance.

When the system expands, the performance of database-dependent
unit tests can become problematic. In these cases, design patterns
such as ObjectMother or MockTypes are useful. Where appropri-
ate, an in-memory database can be utilized for testing.

5.9 Atypical Data Models

If an application system requires extremely flexible data structures (for
example, because the users shall be able to change the data structures
themselves), developers will often work with data modeling on a meta
level. They will create a data model that allows saving any type of data
structure. In principle, this can be realized in two ways: Saving of
BLOBs and fieldwise saving.

Such data models enable a flexible handling of constantly chang-
ing data structures and simplify the refactoring process.

5.9 Atypical Data Models

173|

5.9.1 Saving of BLOBs

When saving BLOBs (Binary Large Objects), information about the
actual data structures is only present in the application system. Only
the application knows how these BLOBs are structured internally.
Often such systems work with two tables: a data table and a search
table. The data table possesses only two columns: ID and object. In the
ID column the unique ID of the saved object can be found, whereas the
object can be found in the object column as a BLOB. The ID column is
the primary key.

All criteria which are potentially searched for are listed in the
search table. The search table has two columns too: the ID as well as
the search criterion. The ID column is a foreign key to the data table
ID. For each search criterion which can be looked for with an object, a
data set is stored in the search table. The primary key consists of ID
and search criterion. Figure 5-6 gives an overview of the two tables.

Search Table Data Table

ID: INTEGER —— ID: INTEGER
Search Crit.: VARCHAR Object: BLOB

When saving in BLOBs is desired, developers must decide how uses
relations between objects can be circumvented. Here, a distinction is
made between containment relations and references. Objects that are
contained in other objects will be saved and also read as a whole in a
BLOB with the parent object.

References in class definitions are specially marked (e.g. through
saving only the referenced object’s ID in the field instead of applying a
uses relation). In this way, at first only the original object will be
loaded. The referenced objects will either be loaded directly afterwards
or when they are actually required.

The advantages of this type of modeling are:

Changes of the data structure require only modifications of
classes in the application system, but not of the database
schema itself. Therefore, no simultaneously active database
schema variations are needed.

A refactoring of data structures is limited to changes of the
program code and the migration of existing data.

Data can be migrated stepwise from an old to a new data
structure during loading. The old and new BLOB-Mapper?

Searching for BLOBs in
the Database

Fig. 5-6
Saving Objects as
BLOBs

References between
BLOBs

174

5 Refactoring of Relational Databases

Disadvantages

versions are required for migration, but only one database
schema.

OR mapping is simplified altogether.

Objects with a complex structure can be read and write very
performantly.

It is easy to realize flexible data structures that allow adjust-
ments by the user.

And these are the disadvantages:

The stored data cannot be used without the application sys-
tem.

As a rule, the stored data cannot be used by other systems, i.e.
such that were written in other programming languages. The
database cannot be utilized as an integration medium for dif-
ferent systems.

Report and list generators based on the database cannot be
applied.

Data can only be analyzed as far as this function has been pro-
grammed into the application.

Inconsistent data cannot be repaired manually via the provided
database mechanisms.

The saved objects constitute the smallest locking level.

Where high transaction rates are present, search and data
tables can turn into a bottleneck for locking.

The number of data sets, especially in the search table, can be
very trying regarding the database’s performance capacity
when a large amount of data is involved.

Fieldwise Saving

For fieldwise saving, like for saving with BLOBs, basically two tables
exist: the search table and the data table. However, the data table con-
tains no BLOBS, but a data set for each stored field instead, so that for
each field of each saved object a data set is created. The number of
data sets in this table is easy to calculate: Number of objects * average
number of fields for each object. To make sure that objects can be
reconstructed from the data table, at least columns for the object ID
and the field name are needed besides the ID and field value columns.

If, for instance, Java serialization is used directly, the classes must be able to
load objects of earlier class versions.

5.9 Atypical Data Models 1751

Figure 5-7 shows both tables. The ID in the data table constitutes
the unique primary key. This key is not imperative though. It is also
possible to define the primary key as a composite of object ID and field
name.

Fig. 5-7
Search Table M Fieldwise Saving

ID: INTEGER
Object ID: INTEGER —mp i 1=
Search Crit.: VARCHAR Object ID: INTEGER

Field Name: VARCHAR
Field Value: VARCHAR
Field Type: INTEGER

The advantages of this type of modeling are: Advantages

Changes of the data structure require only modifications of
classes in the application system, but not of the database
schema itself. Therefore, no simultaneously active variations of
the database schema are needed.

A refactoring of data structures is limited to changes of the
program code and the migration of existing data.

Data can be migrated stepwise from an old to a new data
structure during loading.

OR mapping is simplified altogether.

It is easy to realize flexible data structures that allow adjust-
ments by the user.

Advantages as compared to saving in BLOBs:

The data can be used by other systems and tools.
Inconsistent data can be manually repaired.
Ad hoc analyses can be carried out directly with SQL.

In contrast, these are the disadvantages: Disadvantages

Where high transaction rates are present, search and data
tables can turn into a bottleneck for locking.

The number of data sets, especially in the search table, can be
very trying regarding the database’s performance capacity
when a large amount of data is involved.

Access to the database is slowed down, because now not only
one data set per object, but many data sets must be processed.
In comparison, the ratio between the share of user data and the
overhead is relatively bad. For many values less bytes would
suffice for storage (e.g. for Integer fields), but storage capacity

5 Refactoring of Relational Databases

Subsystems in a Time
Recording Example

Subsystem Web

Subsystem Report

is always reserved for String saving. Moreover, for each persis-
tent field its own key information is stored. Sometimes this key
information requires more storage than the actual, saved
data’.

5.10 AnExample

This section will use a more comprehensive example to further elabo-
rate on the previously introduced principles for refactoring with data-
bases. We will use a time recording system for IT consultants, which
lets all consultants access a web interface to enter their actual work
hours. This input serves as the basis for calculating the consultants’
salaries as well as for billing their customers.*

5.10.1 Our Starting Point

The subsystems are depicted in Figure 5-8. The consultants access the
systems via the subsystem Web. The accounting department uses the
subsystem Report to generate the necessary print lists and analyses.

The subsystem Web works with the subsystem Business Objects,
which provides concepts such as Employees and Time Entries. These
business objects are saved in the database and reconstructed from the
database with the subsystem Administration. To this end, a purchased
subsystem DB (the driver for accessing the concrete database; for Java
this will usually be JDBC) is utilized.

The subsystem Report employs the subsystem Analysis in order to
carry out all necessary analyses for the print lists (e.g. all hours for
each employee for one project). Of course, the subsystem Analysis uses
the subsystems Business Objects and Administration to access the per-
sistent business objects. The print lists are created with the aid of a
commercially available report tool (subsystem Report Tool).

3. This problem can be solved by placing field name and field type in a table of
their own (normalized variation).

4. This example is also used in the chapter about API refactorings. We decided to
reprint it here in its entirety, so that both chapters can be read independently
of each other.

5.10 An Example 177|

Fig. 5-8
Subsyst th
ul . o ubsystems of the
| J | — Time Recording
| Report Web
|] e Example
1 |
i i
R 1 jmmmmmmm——mmmm - B
] 1 | 1
i i i i
: I : R4
i] o 2 ittt J
: Analyses = : Administration
1 ! . |
i — —
:) ~ Business Objects €= i
E [— J i
1 |
b i
| |
| 1
'I[]
Tech ! :[
Ny |
I
— | i
" Report Tool T -
The subsystems are arranged in three non-strict layers: user interface
(UI), domain model and technology.
Essentially, the time recording system is based on the business
objects from Figure 5-9: Time Entries has a vital position here: besides
date, start and end time, Time Entries also displays references to
Project, Activity of the project, as well as to Employees.
Fig. 5-9

Time Entries

-date
-start time
-end time

Employees

Business Objects

|178

5 Refactoring of Relational Databases

Fig. 5-10
Data Model for

Business Objects

The New Object
Model for Business
Objects

Figure 5-10 shows a simple data model for storing business objects.

«Table»
«Table» Employee
Time Entries +D
D 1 +Name
+Date
+Start time «Table»
+End time * Project
+Employee ID— D
+Acitivity 1D 5 +Name 1
«Table»
Activity
15
+Name *
+Project ID :

5.10.2 Motives for a Refactoring

The modeling of the subsystem Business Objects strongly influences
the API of the subsystem Administration and thus also the interaction
between Analysis and Administration.

Basically we have to implement the respective low-level functions
for most analyses in Administration. The business objects are too ‘stu-
pid’ to allow the subsystem Analysis to execute complex functions on
them. Theoretically, it is also possible for the subsystem Analysis to
directly access the database. However, this would also mean that the
subsystem Administration no longer encapsulates the database, thus
making modifications of the database schema more difficult.

Therefore, the subsystem Business Objects should be restructured
in such a way that it becomes ‘smarter’ and the API of the subsystem
Administration does not inflate so strongly.

5.10.3 Goal of the Refactoring

This object model of the subsystem Business Objects shall now be
modified in such a manner that the model of the core business objects
will look as follows: each one of the Employees has got a Month
Folder for each month with a Calendar Sheet for every work day. On
the Calendar Sheet all Time Entries are recorded, including start and
end time, Project and Activity in the project (see Figure 5-11).

5.10 An Example 179|

Fig. 5-11

Business Objects

Employee
Month Folder

After Restructuring

Time Entries

+start time
* +end time

Activity

Figure 5-12 shows the corresponding data model.

5 Refactoring of Relational Databases

Fig. 5-12
Data Model After

Restructuring

The Refactoring

Challenge

«Table»
Employee
+1D
1 +Name

«Table»
Month Folder
+D
+Year
+Month
+Employee ID

«Table»
Calendar Sheet
+D
1 +Day
+Month Folder ID

«Table»
«Table» Project
Time Entries +ID 1]
+Name
+D
+5Start time
* |+End time
+Calendar Sheet ID 1
+Activity ID :Ta,b'?”
| 1 ctivity
+|D
+Name -
+Project 1D —

With this restructuring of the subsystem Business Objects we venture
deeply into the system’s vocabulary. We can expect a demand for com-
prehensive restructuring measures of the entire system. Here, we are
going to focus on the refactoring’ impact on database access, that is,
on the data model and the Administration subsystem.

5.10.4 Refactoring Proceeding

The difficulty this refactoring poses lies in the coordination of changes
to the classes and those to tables. Both have to match for each separate
step.

Unfortunately it is impossible to first view the class structure or
the data model isolated from the rest and then deduce the respective
other model from it. The main obstacle is that the uses relations in 1:N
relations of the class model constitute a reversal of the data model. The
Calendar Sheet does have a number of Time Entries, whereas in the
data model Time Entries knows to which Calendar Sheet it belongs. If

5.10 AnExample

181|

you transfer this example to the whole model, you will get a smell
because cyclical relations are present.

Therefore, we will proceed step by step, as we are used to. First,
we are going to reverse the relations between Time Entries and
Employees in the class model: Now Time Entries will no longer know
the Employees, but Employees is assigned a certain amount of Time
Entries. Figure 5-13 illustrates this refactoring step:

Time Entries Time Entries
-date -date
-start time -start time
-end time * |lend time
’ —
—V

The class structure we just created must correspond with the data
model of course. Interestingly, no modification of the data model is
required to achieve this. The data model shown in Figure 5-10 can also
display the new class model.

We will now extract the date information from Time Entries and
put it in the class Calendar Sheet. For now, we will work without the
Month Folder and store the complete date in Calendar Sheet. Figure 5-
14 visualizes this refactoring step on the class model.

The First Step

Fig. 5-13
Reversing the
Relation between
Employee and Time
Entries

The Second Step

|182

5 Refactoring of Relational Databases

Fig. 5-14
Calendar Sheet
Contains Date

Information

Employee

Employee

1 Calendar
Sheet
. -date
1
Time Entries - -
Time Entries
-date -
_start time -start time
* |-end time -end time

Activity Activity

Figure 5-15 describes the matching data model. If the data model’s
tables have exclusively been used to load and save the business objects,
the restructuring explained in Figure 5-15 can be executed as
described, together with the class model’s restructuring:

1.
2.

Add the new table Calendar Sheet to the data model.
When existing data shall be adopted: Copy data per SQL script
from the existing tables into the new table.

. Delete the fields Date and Employee ID from the Time Entries

table.
Rearrange the business objects’ class structure.

. Adapt the mapping functionality in the subsystem Administra-

tion.

5.10

An Example 183]

«Table»
«Table» Employee
Time Entries 7 +ID
+1D +Name
+Date
"'Sta"t?ime aTablen
+End time * Project
+Employee ID |—)
+Activity 1D " +Name 1
«Table»
1 Activity
+1D
| | +Name .
4 +Project ID
«Tablex
Employee
+ID 1
+Name
«Tablex
Calendar Sheet
T +ID
+Date *
+Employee ID
«Table»
Project
+ID
«Table» +Name
Time Entries
+D
+Start time
+End time «Table»
L—{ +Calendar Sheet ID 1 1 Activity
+Activity ID +ID
+Name
+Praject ID

Fig. 5-15
Calendar Sheet
Contains Date

Information

Should, however, several parts of the system access the tables, one can-
not simply remove fields from the tables (Date and Employee ID from
the Time Entries table). In this case, the fields must be set to depre-
cated, resulting in the data model shown in Figure 5-16.

184 5 Refactoring of Relational Databases

Fig. 5-16
«Tables
Calendar Sheet Employee
Contains Data T1+P 7]
. +Name
Information:
Deprecated Fields
«Table»
Calendar Sheet
= 1+ID
1 +Date *
+Employee ID —
«Table»
L Project
v «Table» +ID T
Time Entries +Name
+ID
e
+Start time
« | *End time «Tables
L—{ +Calendar Sheet ID 1 Activity
Employee- +D
*| +Activity 1D 1 T | Name
+Project ID |

The following steps are executed during this refactoring:

1. Add the new table Calendar Sheet to the data model.

2. Set the Date and Employee ID fields in the Time Entries table

to deprecated (e.g. through an entry in the file

deprecated_db.ixt).

Rearrange the business objects’ class structure.

4. Adapt the mapping functionality in the subsystem Administra-
tion so that it will also write the new table and its fields; if nec-
essary using INSERT, should the respective set of data not yet
exist in the Calendar Sheet table.

5. Step by step adjust all other write access instances in the system
in such a way that old and new fields are written parallel.

6. When existing data shall be adopted: Copy data per SQL script
from the existing tables into the new table.

7. Adapt the mapping functionality in the subsystem Administra-
tion so that none of the deprecated fields will be read any
more.

8. Step by step delete all other read access to the deprecated
fields.

9. Step by step delete all other write access to the deprecated
fields — thus enabling reading from the new fields.

10.Delete deprecated fields.

(O8]

Here it becomes clear that modifications of database structures can
become quite tedious if access is not unambiguously channeled by few

5.11 References

185|

classes: In the beginning, all write access instances must be modified in
such a way that they will write to old and new fields. Only then the
read access instances can be adapted stepwise.

It is crucial not to deliver any releases to customers between single
refactoring steps. Otherwise, there is a high risk that the fields won’t
be completely written to. Inconsistent data would be the consequence.

The third big step is extraction of the Month information from the
Calendar Sheet. This step follows the same pattern as the second one
and therefore isn’t described here.

5.11 References

[AgileDB] Agile Datenbanken, mailing list:
http://groups.yahoo.com/group/agileDatabases

This English language mailing list discusses database-related topics
with a focus on agile methods.

[Ambler 2003a] Scott W. Ambler: The Process of Database Refactor-
ing. http://www.agiledata.org/essays/databaseRefactoring.html.
2003.

An article that gives an overview of database refactorings, includ-
ing descriptions of the development processes.

[Ambler 2003b] Scott W. Ambler: Catalog of Database Refactorings.
http://www.agiledata.org/essays/databaseRefactoringCata-
log.html. 2003.

A catalogue of frequently used refactorings of database schemas.

[Celko 1999] Joe Celko: SQL for Smarties — Advanced SQL Program-
ming. 2nd ed., Harlekijn, 1999.

This book provides an introduction to advanced SQL concepits and
presents suggestions for solutions for recurring modeling problems,
such as the mapping of tree structures to relational databases.

[Fowler & Sadalage 2003] Martin Fowler, Pramod Sadalage: Evolu-
tionary Database Design. http://www.martinfowler.com/arti-
cles/evodb.html, 2003.

This article explains the basic concepts of evolutionary database
design. Refactorings of database schemas, the migration of data as
well as refactorings of database access codes are examined.

The Third Step

| 186 5 Refactoring of Relational Databases

[Sadalage & Schuh 2002] Pramod Sadalage, Peter Schuh: The Agile
Database: Tutorial Notes. Presented at XP/Agile Universe 2002,
WWW.Xpuniverse.com.

Here, among other issues, the deprecated marker of database ele-
ments is discussed.

187|

6 API Refactorings

In this chapter, we are going to examine the effects of refactorings on
application programming interfaces (APIs) and the clients based on
them. We will primarily focus on Java in this context. With justifiable
effort, the results should be transferable to other object-oriented pro-
gramming languages.

6.1 Subsystems

In each non-trivial software system, partitions can be found that are
used by other partitions of the same system. Often this kind of struc-
turing is specified: we talk about subsystems, class libraries, frame-
works or components. They all have in common that they are clearly
distinguished from other subsystems. A class always belongs to pre-
cisely one subsystem and is used by the rest of the system via an inter-
face (AP, i.e. application programming interface). To simplify mat-
ters, we will from now on summarize all these different partition types
under the label subsystems.

The division into subsystems as well as the APD’s definition can
either be implicit or explicit. For implicit subsystems, there is no spec-
ification which subsystems exist, what these subsystems are called,
which classes belong to them, or which classes and methods constitute
their API. The system’s structure becomes much clearer when all these
things are explicitly defined. For the explicit definition of subsystems,
so-called component models are used, such as the Eclipse plug-in
model, CORBA, COM, or a business/project-specific component
model.

Subsystems

188

6 API Refactorings

Fig. 6-1
Dependency between
Subsystems

Subsystems for Reuse

Anonymous
Subsystem Users

C

Besides ensuring a clean structuring of the system, subsystems support
reuse. First of all, they can be reused in a company’s different projects.
If a subsystem is rather common, it can either be commercially mar-
keted or distributed as an open source component.

6.2 Problems of APl Refactorings

Unfortunately, modifications of subsystems cannot always be limited
to internal implementations. Occasionally, an API must be adapted as
well in the course of a refactoring.

If a subsystem is not only used for one project (internal reuse), but
for various projects instead, maybe even in different companies (exter-
nal reuse), the refactoring of APIs will become more difficult because
the concrete code, which is based on the API, is unknown. This is the
reason why code based on that subsystem cannot be changed instanta-
neously in the course of an API refactoring. If the API is broken, the
dependent code has to migrate. A subsystem A depends on a sub-
system B when interfaces or classes of subsystem B are used in sub-
system A’s source code.

For the purpose of API modifications, often a distinction between
source code and binary compatibility is made. A modification is source
code-compatible if the system can be compiled and its runtime behav-
ior will still be the same after it has been modified. A modification is
binary compatible if the system will be operable without prior new
compilation. Interestingly, neither does source code compatibility
imply binary compatibility, nor is this the case vice versa. However, we
are concerned with source code compatibility, not binary compatibil-
ity in this chapter (the latter is discussed in [Riviéres 01]).

6.3 Compatibility Classes 189 |

Fig. 6-2
Migratio {C‘z Evolution and

I Migration

<>
<>

B | [Evolutio B B

Sometimes demands not to change a subsystem’s API any further after Stability of APIs
its publication are voiced. In practice, it soon becomes clear that meet-

ing this demand would be purpose-defeating: On one hand, the API

shall not be altered anymore. On the other hand, increased usage of

the subsystem results in new requirements that can only be met

through changing the API. Hence, we will try to build as stable APIs as

possible although we know that we’ll have to modify them sooner or

later.

6.3 Compatibility Classes

Not every change of a subsystem’s API will generate a demand for Compatible and
migration. At worst, compatible changes to the API will require a new Incompatible Changes
compilation of the dependent code!. Regrettably, many more changes

are incompatible than one would expect at first sight. Therefore, add-

ing methods appears not to be a critical step. If an abstract method is

added to an API class though, subclasses can be rendered invalid: they

lack the implementation for the new, abstract method. The following

tables convey an impression of compatibility classes” (we assume that
non-constant fields are private and can thus be disregarded in this con-
text). Non-private attributes can, if applicable, be adapted using the

Encapsulate-Field refactoring.

1. InJava, usually not even a new compilation is necessary. There are a couple of
interesting exceptions though, e.g. the changing of constant values, which is
generated by the compiler in the client classes.

2. The comments on each compatibility class can be found in the descriptions of
the different changes (see 6.5).

190 6 APl Refactorings

Changes to Interfaces:

No. Change Compatibility
1 Adding an interface Incompatible
2 Removing an interface Incompatible
3 Renaming an interface (also: Incompatible

moving an interface into another
package or renaming package)

4 Adding a superinterface Incompatible, because dependent classes can
become abstract

5 Removing a superinterface Incompatible

Changes to Classes

No. Change Compatibility
1 Adding a class Incompatible
2 Removing a class Incompatible
3 Renaming a class Incompatible

(also: moving a class into an-
other package or renaming pack-

age)
4 Changing a superclass Incompatible
5 Adding an interface Incompatible
6 Removing an interface Incompatible
7 Expanding visibility Compatible
8 Restricting visibility Incompatible
9 Setting a class from Compatible
final to non-final
10 Setting a class from Incompatible
non-final to final
11 Setting a class to abstract Incompatible
12 Setting a class from Compatible

abstract to non-abstract

6.3 Compatibility Classes

191|

Changes to Constants in Classes and Interfaces

No. Change Compatibility
1 Adding a constant Compatible
2 Removing a constant Incompatible
3 Changing a constant type Incompatible
4 Changing a constant value Compatible

Changes to Methods in Interfaces

No. Change Compatibility
1 Adding a method Incompatible
2 Removing a method Incompatible
3 Renaming a method Incompatible
4 Changing a method’s Incompatible

parameter list
5 Changing a method'’s Incompatible
return type
6 Adding an exception to Incompatible
a method in the interface
7 Removing an exception from Incompatible
a method in the interface
Changes to Constructors in Classes:

No. Change Compatibility

1 Adding a constructor Incompatible, if the classes until now
did not have an explicit constructor
2 Removing a constructor Incompatible
3 Changing a constructor’s Incompatible
parameter list
6 Expanding a constructor’s Compatible
visibility

7 Restricting a constructor’s Incompatible

visibility

192 6 APl Refactorings

No. Change Compatibility

12 Weakening a constructor’s Compatible
precondition

13 Strengthening a constructor’s Incompatible
precondition

18 Adding an exception Incompatible

to the constructor
19 Removing an exception Incompatible

from the constructor

6.3 Compatibility Classes

193|

Changes to Methods in Classes:

No. Change Compatibility

1 Adding a method Incompatible, if the method is abstract;
also incompatible, if the new method
is final and “accidental” redefinitions

take place in subclasses

2 Removing a method Incompatible

3 Renaming a method Incompatible

4 Changing a method'’s Incompatible

parameter list
5 Changing a method'’s return type Incompatible

6 Expanding a method'’s visibility

7 Restricting a method’s visibility

8 Setting a method from
final to non-final

9 Setting a method from
non-final to final

10 Setting a method from
static to non-static

11 Setting a method from
non-static to static

12 Setting a method to abstract

13 Setting a method from
abstract to non-abstract

14 Weakening a method’s
precondition

15 Strengthening a method’s
precondition

16 Weakening a method’s
postcondition

17 Strengthening a method’s
postcondition

Incompatible, if the method
is redefined in subclasses

Incompatible
Compatible
Incompatible, if the method
is redefined in subclasses
Incompatible
Incompatible, if the method
is redefined in subclasses
Incompatible

Compatible

Incompatible, if the method is redefined

Incompatible, if the method is called

Incompatible, if the method is called

Incompatible, if the method is redefined

194 6 APl Refactorings
No. Change Compatibility
18 Setting method to synchronized Incompatible, if the method is
used in a multi-threaded context
19 Setting method from synchro- Incompatible, if the method is
nized to non-synchronized used in a multi-threaded context
20 Adding an exception Incompatible
to a method in a class
21 Removing an exception from Incompatible
a method in a class
Deprecated Tag It turns out that most API changes are incompatible. In Java, the dep-
recated tag will provide some first assistance: it allows us to mark
interfaces, classes and methods as obsolete. A class that shall be
deleted will not be deleted right away but identified as deprecated. The
class can still be used, although the compiler will generate a warning
each time this happens. The dependent code can migrate step by step
while staying compilable and executable at all times.
The following source code depicts how the deprecated tag denotes
deletion of the class MyClass.
/ * %
* @deprecated
*/
public class MyClass
{...}
Deferred- Use of the deprecated tag creates a new compatibility class. Such

incompatible Changes

Changes that Can Be

Automated

‘denoted’ incompatible changes are called deferred-incompatible.

When we take a closer look at the table above, we will see that, in
principle, the renaming of interfaces, classes and methods could be
carried out automatically. One would merely need a machine-readable
description of the changes to the API plus a program that reads in
these descriptions and makes the necessary changes to the client. Espe-
cially for renamings, a simple mapping file in which the old as well as
the new name is listed would suffice. Such a function for automated
migration when package names are altered is already integrated in
some development environments.

In this case, we speak of automatable changes and get the follow-
ing compatibility classes:

6.4 Refactoring Tags

195|

No. Compatibility Class Migration
1 Compatible No migration required
2 Automatable Automatic migration is possible in a single step;

rather little effort needed

4 Deferred- Stepwise migration is possible. The system
incompatible stays compilable and executable all the time
5 Incompatible Migration must be carried out completely.

During migration, the system is neither
compilable nor executable

6.4 Refactoring Tags

To simplify the migration of dependent subsystems and enable merci-
less refactorings® also for published interfaces, we are going to intro-
duce the concept of refactorings tags (see [Roock 04]), which serve to
improve the compatibility of changes. Incompatible changes will
become either deferred-compatible or even automatable.

In the following sections, we will show how the new meta tags
affect the refactoring work on published APIs. Based on possible mod-
ifications of APIs, we will also show in detail how these can be exe-
cuted in such a manner as to ensure compatibility.

6.4.1 The Future Tag

The Future tag demonstrates which form an interface, a class or a
method will have in the future. If an API client uses an element with a
Future tag, the developers can verify whether their usage of the ele-
ment will still be valid in the future.

The simplest form of the Future tag specifies that the respective
element will be deleted in the future. The following source code sample
shows how the Future tag announces deletion of the class MyClass.

* @future #undefined
*/
public class MyClass
{...}

3. The term Merciless Refactoring is derived from agile methods practice and
emphasizes that here refactorings are a central part of everyday development
work.

196

6 API Refactorings

An Example

With the deprecated tag, Java offers a similar mechanism. The depre-
cated tag can be used as an acronym for the Future tag displayed
above, supplemented with #undefined. The deprecated tag is inter-
preted by the Java compiler. Whenever an element marked deprecated
is referenced, the compiler will give out a warning. The element will be
compiled correctly though, and the system will remain completely
operational.

However, no warning will be generated if the obsolete element as
well as the referencing element can be found in one and the same class.

For classes, the Future tag can also denote changes to the modifier
(visibility, final), as well as changes to the superclass and to imple-
mented interfaces. For interfaces, this tag can also be used to mark
changes to superinterfaces.

The inheritance relation between Customer and Partner can be
marked as obsolete in the Customer class’s comment. Here, the Future
tag is used to denote that the inheritance relation will be deleted at
some point.

/**
* @future public class Customer
*/

public class Customer
extends Partner

Thus, all direct uses of Customer and Partner stay valid. It is
important that the client will be no longer allowed to make use of the
inheritance relation between Customer and Partner, as it is the case
with polymorphic assignments, for instance.

Even several changes can be described with the Future tag. In the
following example, in the future the class Customer will no longer
inherit from Partner and also no longer implement the Serializable
interface. Instead, only the Comparable interface will be implemented.

/**
* @future public class Customer implements Comparable
*/
public class Customer
extends Partner

implements Serializable, Comparable

6.4 Refactoring Tags

197|

For methods, changes of the modifiers can be described. Especially
switches from non-final to final as well as changes of visibility can be
elegantly expressed with the Future tag.

The following example shows how the Future tag denotes that the
method setName will become final in the next version. Until the next
subsystem version release, the client developers can eliminate all redef-
initions of setName.

/**
* @future public final void setName (String name)
*/

public void setName (String name)

Additionally, the tag can be supplemented with an informal descrip-
tion of what is to do now that the element cannot be longer used in the
old way.

6.4.2 ThePastTag

Whereas the Future tag shows what an element will look like in the
future, the Past tag describes what the element looked like in the past.
This enables developers to see what the element’s name was in the pre-
vious version. For classes and interfaces, it also contains information
about in which packages the classes and interfaces were stored before.

The Past tag serves to visualize renamings and moves. In principle,
the changes thus become automatable. The following example shows
the Past tag for renaming a method setNamie to setLastName.

/**
* @past public void setName (String name)
*/

public void setLastName (String name)

Migration can be accomplished in an even smoother manner not sim-
ply through renaming the method, but through duplicating it. The new
version will refer to the old one via the Past tag, and the old version
will be marked deprecated.

198

6 API Refactorings

Future Tag

Past Tag

/**
* @deprecated
*/

public void setName (String name) {
setLastName (name) ;

}

/**
* (@past public void setName (String name)
*/

public void setLastName (String name)

In JDK, the succession method is often directly and informally
appended to the deprecated tag.

/**
* @deprecated Replaced by setLastName (String)
*/

public void setName (String name) {
setLastName (name) ;

}

public void setlLastName (String name)

6.4.3 Working with Refactoring Tags

The refactoring tags introduced here can also be usefully applied with-
out the aid of special tools. The search options offered by modern
development environments (e.g. Eclipse) are completely sufficient
here.

First, the source code of a subsystem can be searched for all Fuzure
tags. Based on the elements found and supported by the development
environment, one can determine in which places they are used. The
developer must check the using elements and adapt them where neces-
sary.

Similarly, Past tags in subsystems can be searched with the source
code search function. The results will let developers conclude how
these elements used were labeled before. The uses of the renamed ele-
ments can be roughly determined with a source code search, followed
by a check of the detected uses and - if required — changes of their use.

Using the deprecated tag is even simpler. The compiler will point at
the places in the client code where deprecated elements are used. These
places must merely be analyzed. The more information has been added

6.5 API Refactorings in Detail

199|

to the deprecated tag (e.g. ‘replaced with’), the easier migration will

be.

6.4.4 Tools for Migration

Specialized tools facilitate the handling of refactoring tags. Aided by
the Past taglet, the subsystem developers can analyze the subsystem
APIs’ Past tags. The Past taglet will write the detected renamings to a
file. Then this file is — together with the new subsystem version — deliv-
ered to the subsystem’s clients. Here, the renaming file serves as input
for the Renamer, which carries out the required renamings in the client
code.

A first version of these open-source tools is available for download
as an Eclipse-plug-in at: hitps://sourceforge.net/projects/jmigrator.

In addition, we plan to implement the Future Warner: It will check
the client code for future invalid use of the API. Whenever such an
invalid use is identified, a warning will be issued. Then the client devel-
opers could change the client code in such a way that it would function
with a future subsystem version.

6.5 APl Refactorings in Detail

If a subsystem’s API is modified, two kinds of conflicts can emerge:
structural conflicts and behavior conflicts. Structural conflicts prevent
the system’s compilability. In the case of a behavior conflict, the system
will still be compilable, although its execution will be faulty. However,
a clean test coverage will at least help to identify and systematically
eradicate behavior conflicts.

In this section, we are going to explain for each API modification
which conflicts it will create and how it can best be carried out com-
patibly.

The goal of changes to APIs is always to maintain compatibility
with existing clients. One-hundred per cent security can hardly be ever
reached. Many of the techniques for API refactorings presented here
function based on copying a method and then pasting it with a new
name. Admittedly, the generation of a method in turn will be incom-
patible. In practice though, such change does hardly ever lead to prob-
lems. Therefore, we accept that there is no such thing as one-hundred
per cent security. We will content ourselves with a high compatibility
probability.

Next, we will describe typical modifications. We always adhere to
the premise that non-constant attributes in classes are always private.

200

6 API Refactorings

New and Temporary
Method Names

This is why we won’t consider the possible changes to attributes and
their consequences any further.

During the following refactorings, you will frequently encounter situa-
tions in which methods are not simply deleted or modified. Instead, they
are copied and saved with a new name. Only later on the old version
of the method will be deleted. The problem here is to find good, i.e.
meaningful names for the methods. Let us assume that the old name
was meaningful. Now we have to find an equally good, i.e. meaningful
name to replace the old one. Alternatively, we can mark the new name
as temporary, adhering to the respective convention (for example, the
old name could be supplemented with the ending _TEMP) and change
it back in the next version of the subsystem.

6.5.1 Changes to Interfaces

Adding an Interface

In most cases, adding an interface is compatible. The change will
become incompatible though if an interface of the same name already
exists in another package. Should the client import both packages with
* an ambiguity will be the result, and the client can no longer be com-
piled.

The change will not even become compatible when a subsystem’s
interface names are unambiguous without package names. Last but
not least, an interface with an identical name can also be defined in
another subsystem. Nevertheless, interface names should be unique for
each subsystem. Thus the risk of ambiguities will not be entirely elimi-
nated, but at least reduced.

Removing an Interface

The removal of interfaces is incompatible. If the interface is not imme-
diately removed but set to deprecated instead, the change becomes
deferred-incompatible.

Renaming Interfaces

The renaming of an interface is incompatible. One could copy the
interface with the new name and set the old version to deprecated.
However, this approach could easily create type problems, even if the
new interface inherits from the old one or vice versa.

If the interface is renamed and the old name annotated with the
Past tag, the change will become automatable.

6.5 API Refactorings in Detail

201

Here is an example for renaming the Customer interface into Part-
ner:

/*k*k
* @past public interface Customer
*/

public interface Partner

It should not go unmentioned that a change carried out with the Past
tag is not always automatable. If an interface of the new name does
already exist in another package, this can lead to an ambiguity (see
also ‘Adding an Interface’).

Adding a Superinterface

When another interface is added to the list of interfaces that inherited,
we will receive an incompatible change. Client classes that implement
this interface will become abstract because they do not implement the
methods of the new superinterface.

If the client class previously owned methods that now ‘coinciden-
tally’ implement the superinterface’s methods, a behavior conflict can
emerge.

The change will become deferred-incompatible when the interface
is not directly added to the interfaces that inherited and the change is
denoted only with the Future tag instead. The Future warner can
detect those classes that must implement the new interface in the
future. In this way, the client developers can adapt their code before
the actual change is executed.

Here is an example of how the Future tag is used:

/**

* @future public interface Customer
* extends Partner

*/

public interface Customer

Removing a Superinterface

If an interface is removed from the list of those interfaces that inher-
ited, we are faced with an incompatible change. Client classes that use
the interface for typing demand more methods than the interface will
offer after the change.

202

6 API Refactorings

This change will become deferred-incompatible if the interface is
not directly removed from the list of interfaces that inherited, but the
change is merely denoted with the Future tag instead. The Future
warner can detect those classes that will expect methods which no
longer exist in the future. The client developers can adapt their code
before the actual change is executed.

An example of the Future tag’s use:

/**
* @future public interface Customer
*/

public interface Customer extends Partner

6.5.2 Changes to Classes

Adding a Class

As a rule, the addition of a class is compatible. The change will become
incompatible though when a class of the same name already exists in
another package. If the client imports both packages with *, an ambi-
guity will emerge, and the client can no longer be compiled. The only
exception to this rule is the occurrence of a client coincidentally com-
piled with the wrong class. In such case it is very likely that a behavior
conflict will emerge.

The change will not even become compatible if the class names of
a subsystem are unique without being assignable to package names.
After all, a class of the same name can also be defined in another sub-
system. Nevertheless, class names should be unique for each sub-
system. The risk of ambiguities will not be entirely eradicated, but at
least reduced.

Removing Classes

The removal of classes is incompatible. If the class is not immediately
removed but set to deprecated instead, the change will become
deferred-incompatible.

Renaming Classes

The renaming of a class is incompatible. Theoretically, one could copy
the class, assign it the new name and set the old version to deprecated.
This can easily lead to type problems though, even if the new class
inherits from the old one or vice versa.

6.5 API Refactorings in Detail

203

If the class is renamed and the old name annotated with the Past
tag, the change will become automatable.
Look at the example for renaming the class Customer in Partner:

/**
* @past public class Customer
*/

public class Partner

Unfortunately, changes using the Past tag cannot always be auto-
mated. If a class with the new name already exists in another package,
an ambiguity might be created (see also ‘Adding a class’).

Changing a Superclass

Changes of the superclass are incompatible. At first, polymorphic
assignments will become invalid.

For example:

If Customer is a subclass of Partner, and Partner is exchanged as a
superclass, all assignments of Customer to variables of the Partner
type will become invalid.

Moreover, the subclasses of the modified classes will become
abstract if the new superclass defines abstract methods. Should the
subclasses ‘coincidentally’ define the abstract methods, a behavior con-
flict will be the outcome.

If the Future tag is used to denote changes, it will be rendered
deferred-incompatible. The Future warner can identify those classes
which will either expect methods that will no longer exist in the future
or no longer implement defined abstract methods. This allows client
developers to adapt their code before the actual change is made.

The following is an example of the Future tag’s use:

/**

* @future public class Customer
* extends Person

*/

public class Customer extends Partner

Adding an Interface

The adding of an interface to the list of interfaces that are implemented
by the class is incompatible: existing subclasses will become abstract.

204

6 API Refactorings

If the subclasses ‘coincidentally’ define the methods, a behavior con-
flict will emerge.

The change will become deferred-incompatible if the addition of
the interface is denoted with the Future tag.

For example:

/**
* @future public class Customer
* implements Storable
*/

public class Customer

Removing an Interface

The removal of an interface from the list of interfaces implemented by
the class is incompatible: the class’s objects are no longer assignable to
the remote type.

The change will become deferred-incompatible if the removal of
the interface is denoted with the Future tag.

For example:

/**
* @future public class Customer
*/

public class Customer implements Storable

Expanding Class Visibility

The expansion of class visibility is compatible.

Restricting Class Visibility

The restriction of class visibility is incompatible.

The change will become deferred-incompatible if the visibility
restriction is denoted with the Future tag.

For example:

/**
* @future class Customer
*/

public class Customer

6.5 API Refactorings in Detail

205

Setting a Class from Final to Non-final

If a class that is declared final is set to non-final, the change is compat-

ible.

Setting a Class from Non-final to Final

If a class is set from non-final to final, a structural conflict will be the
result: existing subclasses will be rendered invalid.

The change will become deferred-incompatible if it is not executed
directly, but denoted with the Future tag instead.

Here is an example of the Future tag’s use:

/*k‘k
* @future final public class Customer
*/

public class Customer

Setting a Class to Abstract

If a concrete class becomes abstract, we are faced with an incompatible
change. When objects of this class are created, those create statements
will become invalid.

The change will become deferred-incompatible if it is denoted with
the Future tag.

For example:

/**
* @future public abstract class Customer
*/

public class Customer

Setting a Class from Abstract to Non-abstract

If an abstract class becomes concrete, we are faced with a compatible
change — at least as long as no new methods that were previously
abstract must be added to the class. If that was the case, we could get
a behavior conflict.

206

6 API Refactorings

6.5.3 Changes to Constants in Interfaces/Classes

Adding a Constant

The addition of a constant is compatible.

Removing a Constant

If a constant is removed, a structural conflict will occur.
The change will become deferred-incompatible if the constant is
not deleted, but marked as deprecated instead.

Changing a Constant Type

The changing of a constant type is incompatible.

The change will become deferred-incompatible if a new constant
with the desired type is created while the old constant is set to depre-
cated.

For example:

interface Printer ({
/**
* @deprecated
*/
public static final int LASERPRINTER=1;
/**
* @deprecated
*/
public static final int INKJETPRINTER=2;

public static final String
LASERPRINTER TYP=“laser";

public static final String
INKJETPRINTER TYP=“ink";

Changing a Constant Value

The changing of a constant value is — as a rule — compatible. However,
if a number of constants constitutes the value range of an enumeration
type, the change can create a behavior conflict. This is the case when
the client’s value range has been expanded by constants of its own and
the values used there are in conflict with the new constant value.

6.5 API Refactorings in Detail

207

6.5.4 Changes to Methods in Interfaces

Adding a Method to an Interface

If a method is added to an interface, a structural conflict will be cre-
ated. Existing implementations of the interface will become abstract,
because they don’t possess an implementation of the new method. If,
by chance, a suitable method already happens to exist in an implemen-
tation, this method will be implemented ‘accidentally.’ This can lead to
a behavior conflict.

The change will become compatible if the interface is not directly
implemented in the application, but application classes are derived
from default implementations instead. Then the subsystem developers
can provide a suitable method implementation in the default imple-
mentation.

For example:

public interface Window {
public void setWidth (int w);
public void setHeight (int h);

// new method: setSize
public void setSize (int width, int height);

public class DefaultWindow implements Window {
private int width, height;

public void setWidth (int w) {
width = w;

public void setHeight (int h) {
height = h;

// new method: setSize

public void setSize(int w, int h) {
setWidth (w) ;
setHeight (h) ;

208

6 API Refactorings

Default
Implementations of

Interfaces

Removing a Method from an Interface

The removal of a method from an interface is incompatible. The
change will become deferred-incompatible if the method is not directly
deleted, but set to deprecated instead.

Renaming a Method in an Interface

If a method in an interface is renamed, a structural conflict will be the
result. Generally, the change will become automatable if the method’s
previous name is defined in the Past tag.

For example:

public interface Customer {
/**
* @past void setName (String name)
*/

public void setLastName (String name) ;

Yet it is possible to experience situations where the changes will
remain incompatible. This is going to be the case if a method of the
same name and parameters but with a different return type does
already exist in either a subinterface or an implementation of this
interface. If a method with the same parameters and a matching return
type exists in an implementation, a behavior conflict can occur
because the renamed method will be automatically implemented by
the method in that implementation. If a default implementation exists
for the interface and classes are never directly implemented in that
interface, but succeed the default implementation instead, the change
can also be handled with the deprecated tag: In this case, the method
must be duplicated in both the interface and the default implementa-
tion. Also, the old method must be set to deprecated.

Changing the Parameter List of a Method in the Interface

If the parameter list of a method in an interface is changed, a structural

conflict will emerge. The change will become deferred-incompatible

unless it is executed directly. Instead, the method will be copied and

the copy will be changed. The old method must be set to deprecated.
For example:

6.5 APl Refactorings in Detail 209

public interface Customer {
/**
* @deprecated
*/
public void setName (String name) ;
public void setName (String lastname,
String firstname);

Changing the Return Type of a Method in the Interface

If the return type of a method in an interface is changed, the change
will be incompatible. Existing implementations of this method in the
client will become invalid.

The change will become deferred-incompatible when a new
method with a new name and the desired return type is created. The
old method will be marked with the deprecated tag.

We will have to find a new name for the new method if the pro-
gramming language (in this case Java) does not allow for defining a
number of methods in one class that can only be distinguished by their
return type.

For example:

public interface Customer {
/**
* @deprecated
*/
public String getname () ;
public Name getCustomername () ;

Adding an Exception to a Method in the Interface

The addition of an exception to a method is incompatible because the
client code will have to catch this exception.

The change will become deferred-incompatible if the method is
copied and generated together with the desired exception list under a
new name. The old method must be set to deprecated.

For example:

210

6 API Refactorings

public interface Printer {
/**
* @deprecated
*/
public void print (Document d);
public void printDoc (Document d)
throws PrinterException;

Removing an Exception from a Method in the Interface

The removal of an exception from a method is incompatible because
the client code is not allowed to catch this removed exception. In addi-
tion, redefinitions of the method will become invalid because they
expand the exception list.

The change will become deferred-incompatible if the method is
copied and generated with a new name together with the desired
exception list. The old method will be set to deprecated.

For example:

public interface Printer {
/**
* @deprecated
*/
public void print (Document d)
throws PrinterException;
public void printDoc (Document d);

6.5.5 Changes to Constructors in Classes

Adding a Constructor

When a new constructor is added to a class, incompatibilities will
emerge, as long as no explicit constructor exists. In this case, the com-
piler will no longer generate the default constructor. Clients that until
now have been using the default constructor will become invalid.

The change will become compatible if one always creates an
explicit default constructor whenever the first constructor is inserted.
This problem can be avoided right from the start when always at least
one explicit constructor is created.

6.5 API Refactorings in Detail

211

Removing a Constructor

The removal of a constructor from a class is incompatible. The change
will become deferred-incompatible if the constructor is not directly
deleted, but set to deprecated instead.

Changing a Constructor’s Parameter List

If the parameter list of a constructor is changed, a structural conflict
will occur. The change will become deferred-incompatible unless the
change is made directly. Instead, the constructor will be copied and the
copy will be changed. The old constructor will be set to deprecated
and call the new constructor.

For example:

public class Customer {

/**
* @deprecated
*/

public Customer (String name) {
this (name, ,%“);

public Customer (String lastname,
String firstname)

Expanding Constructor Visibility

If constructor visibility is expanded, the change will be compatible.

Restricting Constructor Visibility

If constructor visibility is restricted (e.g. from public to protected), an
incompatible change will be the result. Clients that use the respective
constructor will become invalid because the constructor is no longer
visible to them.

The change will become deferred-incompatible if the restriction of
the constructor’s visibility is denoted with the Future tag.

For example:

212

6 API Refactorings

public class Customer {
/**
* @future protected Customer (String name)
*/
public Customer (String name)

{..}

Weakening of a Constructor’s Precondition?

If a constructor’s precondition is weakened, a compatible change will
be the outcome.

Strengthening of a Constructor’s Precondition

If a constructor’s precondition is strengthened, its uses will become
invalid. Thus the change will be incompatible.

Adding an Exception to a Constructor

The addition of an exception to a constructor is incompatible because
the client code has to catch this exception.

Removing an Exception from a Constructor

The removal of an exception from a constructor is incompatible
because the client code is not allowed to catch this removed exception.

6.5.6 Changes to Methods in Classes

Adding Methods to a Class

If a new, non-private method is added to a class, incompatibilities will
arise. If a method of the same name and parameters but with a differ-
ent return type exists in a subclass, a structural conflict will emerge.
Even if the method is defined with identical parameters and an identi-
cal return type in the subclass, the structural conflict will be inevitable
if the method in this subclass is less visible. Should the method’s signa-
ture happen to be the same as the signature of the new method, a
behavior conflict is likely to result, because the new method will acci-
dentally be overwritten by the subclass.

4. Pre- and postconditions refer to the contract model based on the design-by-
contract principle (cf. [Meyer 92]).

6.5 API Refactorings in Detail

213

Removing Methods from Classes

The removal of a method from a class is incompatible. The change will
become deferred-incompatible if the method is not directly deleted but
set to deprecated instead.

Renaming Methods in Classes

If a method in a class is renamed, a structural conflict will be the result.
As a rule, the change will become automatable if the method’s previ-
ous name is defined in the Past tag.

For example:

public class Customer {
/**
* @past void setName (String name)
*/

public void setLastName (String name) ;

Alternatively, the old method can also be copied and saved with the
new name. Then the old method must be set to deprecated. In this
case, the change will not become automatable, but at least it will be
deferred-incompatible. Yet it is possible to experience situations where
the changes will remain incompatible. This is going to be the case if a
method of the same name and parameters but with a different return
type already exists. Should a method of the same name, the same
parameters plus a matching return type exist in the subclass, a behav-
ior conflict can emerge because the renamed method will be overwrit-
ten by the method in the subclass.

Changing Parameter List of a Method in a Class

If the parameter list or the return type of a method in a class is
changed, a structural conflict will emerge. The change will become
deferred-incompatible unless the change is not made directly. Instead,
the method will be copied and the copy will be changed. The old
method will be set to deprecated and call the new method.

For example:

214

6 API Refactorings

public class Customer {

/**
* @deprecated
*/

public void setName (String name) {
setName (name, ,%);

public void setName (String lastname,
String firstname)

Changing the Return Type of a Method in a Class

If the return type of method in a class is changed, the change is incom-
patible. Existing redefinitions of this method in the client will become
invalid. If the new return type is no subtype of the old one, the uses of
the respective methods will also be rendered invalid.

The change will become deferred-incompatible if a new method
with the new name and the desired return type are created. The old
method will be marked deprecated and their implementation will refer
to the new method.

For example:

public class Customer {

/**
* @deprecated
*/
public String getName () {
return getCustomername () .toString() ;

public Name getCustomername ()

{..}

6.5 API Refactorings in Detail

215

Expanding Method Visibility in a Class

If method visibility in a class is expanded (e.g. from protected to pub-
lic), we will get an incompatible change. Existing redefinitions of this
method will become invalid because they restrict visibility.

The change will become deferred-incompatible if a copy of the
method with the desired visibility is generated and saved with another
name. The old method will be set to deprecated. The new method will
refer to the old method.

For example:

public class Customer {

/**

* @deprecated

*/
protected String getName ()
{..1}

public String getCustomername () {
return getName () ;

Restricting Method Visibility in a Class

If method visibility in a class is restricted (e.g. from public to pro-
tected), an incompatible change will result. Clients of this method will
become invalid, because the method will no longer be visible to them.

The change will become deferred-incompatible if a copy of the
method with the desired visibility is generated and saved with another
name. The old method will be set to deprecated and refer to the new
method.

For example:

public class Customer {

/**
* @deprecated
*/

public String getName () {
return getCustomername () ;

216

6 API Refactorings

protected String getCustomername ()

{..}

Setting a Method in a Class from Final to Non-final

If a2 method declared final is set to non-final, the change will be com-
patible.

Setting a Method in a Class from Non-Final to Final

If a method is set final, the change will be incompatible because exist-
ing redefinitions of that method have become invalid.

The change will become deferred-incompatible if the old method is
copied and inserted under a new name. The new method will be
declared final and call the old method.

For example:

public class Customer {

/**

* @deprecated

*/
public String getName ()
{..}

public final String getCustomername () {
return getName () ;

Setting a Method in a Class from Static to Non-static

If a method is set from static to non-static, the change will be incom-
patible. Calls via the class name will be rendered invalid through the
change. Now, one instance of the class will always be required.

The change will become deferred-incompatible if a new, non-static
method is generated under a new name. At the same time, a static vari-
able that contains a default instance of the respective class will be
introduced into the class. The old method will be set to deprecated and
call the new method on this default instance.

For example:

public class Printer {

6.5 API Refactorings in Detail

217

private static Printer defaultPrinter =
new Printer () ;

/**
* @deprecated
*/

public static void print (Document d) {
defaultPrinter.printDoc (d);

public void printDoc (Document d)

{..}

Setting a Method in a Class from Non-static to Static

If a method is set to static, the change is incompatible. Redefinitions of
methods in client classes will be rendered invalid through the change.
The change will become deferred-incompatible if a new, static
Method is generated under a new name. The old method will be set to
deprecated and call the new method.
For example:

public class Printer {

/**
* @deprecated
*/

public void print (Document d) {
printDoc (d) ;

public static void printDoc (Document d)

(..}

Setting a Method to Abstract

If a method that was until now concrete is changed into an abstract
method, the resulting change will be incompatible: existing subclasses
will become abstract.

The change will become deferred-incompatible if the change is
denoted with the Future tag.

For example:

218 6 APl Refactorings

public abstract class Printer ({
/**
* @future abstract print (Document d)
*/
public void print (Document d)
{
printDoc (d) ;

Setting a Method from Abstract to Non-abstract

If an abstract method becomes non-abstract, we will get a compatible
change.

Weakening of a Method’s Precondition in a Class

If a method’s precondition is weakened, uses of this method will
remain valid. However, redefinitions of this method will become
invalid, because they expect the old precondition. It is not permissible
though to strengthen the precondition in a class. Thus the change is
incompatible.

The change will become deferred-incompatible if a new method
with the desired precondition is created under a new name.

For example:

public class Printer {

/**
* @deprecated
* @require d != zero
*/
public void print (Document d) {
printDoc (d) ;

/**
* @require true
*/
public void printDoc (Document d)

{..}

6.5 API Refactorings in Detail

219

Strengthening of a Method'’s Precondition in a Class

If a method’s precondition is strengthened, redefinitions of this
method will remain valid. However, uses of this method will become
invalid. Thus the change is incompatible.

The change will become deferred-incompatible if a new method
with the desired precondition is created under a new name.

For example:

public class Printer ({

/**
* @deprecated
* @require true
*/
public void print (Document d)

{..}

/**

* @require d != zero

*/

public void printDoc (Document d) {
print (d) ;

Weakening of a Method’s Postcondition in a Class

If a method’s postcondition is weakened, redefinitions of this method
will remain valid. However, uses of this method will become invalid.
Thus the change is incompatible.

The change will become deferred-incompatible if a new method
with the desired postcondition is created under a new name.

For example:

public class Printer {

/**
* @deprecated
* @densure d.hasbeenprinted()
*/

public void print (Document d)

{..}

220

6 API Refactorings

/**
* @ensure true
*/

public void printDoc (Document d) {
print (d) ;

Strengthening of a Method’s Postcondition in a Class

If a method’s postcondition is strengthened, uses of this method will
remain valid. However, redefinitions of this method will become
invalid. Thus the change is incompatible.

The change will become deferred-incompatible if a new method
with the desired postcondition is created under a new name.

For example:

public class Printer {

/**
* @deprecated
* @ensure true
*/
public void print (Document d) {
printDoc (d) ;

/**
* @ensure d.hasbeenprinted()
*/
public void printDoc (Document d)

{..}

Setting a Method in a Class to Synchronized

If a method that is declared non-synchronized is set to synchronized,
there will be the rare case in which this change is incompatible. It can
trigger deadlocks, and a behavior conflict will be the consequence.
The change will become deferred-incompatible if the method is
copied and inserted as synchronized under a new name. The old
method will be set to deprecated.
For example:

6.5 API Refactorings in Detail

221

public class Printer ({

/*k*k
* @deprecated
*/
public void print (Document d)

{..}

public synchronized void printDoc (Document d)
{..}
}

In contrast to the usually applied duplicating of methods, the original
method will not be simply delegated to the new method. If this was
done, the aforementioned deadlock situation would occur. Instead, the
new method can either call the old one or the implementation itself
will be copied.

Setting a Method in a Class from Synchronized to Non-synchronized

If a method that declared synchronized is set to non-synchronized, the
change will be incompatible. Multi-threaded applications can display
an aberrant behavior after this change has been made. A behavior con-
flict will emerge.

The change will become deferred-incompatible if the method is
copied and inserted as non-synchronized under a new name. The old
method will be set to deprecated.

For example:

public class Printer {

/**
* @deprecated
*/
public synchronized void print (Document d)

{..}

222 6 APl Refactorings

public void printDoc (Document d) {
print (d) ;

Adding an Exception to a Method in a Class

The addition of an exception to a method is incompatible because the
client code must catch this exception.

The change will become deferred-incompatible if the method is
copied and generated under a new name with the desired exception
list. The old method will be set to deprecated.

For example:

public class Printer {

/**
* @deprecated
*/
public void print (Document d)

{..}

public void printDoc (Document d)
throws PrinterException ({
print (d) ;

Removing an Exception from a Method in a Class

The removal of an exception from a method is incompatible because
the client code is not allowed to catch this removed exception. More-
over, the method’s redefinitions will become invalid because they
expand the exception list.

The change will become deferred-incompatible if the method is
copied and generated under a new name with the desired exception
list. The old method will be set to deprecated.

For example:

6.6 Converter

223

public class Printer ({

/*k*k
* @deprecated
*/

public void print (Document d)
throws PrinterException {
printDoc (d) ;

public void printDoc (Document d)

{..}

6.6 Converter

The refactoring tags described here clearly aim at keeping the new
interface of the modified subsystem temporarily backwards-compati-
ble with the old version. Thus the interface gets ‘polluted’ with meth-
ods that are not needed by the new client in the subsystem.

Converters that convert object structures between different ver-
sions are an alternative here. If they are used, the subsystem’s API will
not be altered. The subsystem is copied instead, so that the old as well
as the new version of the subsystem can be used parallel. Often the
new version of the subsystem will receive the suffix ‘2.’

Since in many cases it is not possible to adapt the entire applica-
tion at once, some parts of it will continue to work with the sub-
system’s old version for the time being, while other parts are already
using the new subsystem version. If the different parts of the applica-
tion have to communicate with each other, the object structures of the
old and the new subsystem versions must be bidirectionally convert-
ible.

For this purpose, developers of a duplicated subsystem can supply
one converter or more. In this way, the system’s ‘pollution’ will be lim-
ited, and the convention of adding the suffix ‘2’ will make it sufficiently
clear to anyone that the old subsystem version will soon be history.
Moreover, all classes of the old subsystem version will be set to depre-
cated, of course.

Converters do display definite limitations though, if classes of the
modified subsystem have been inherited by other subsystems. In such
case, it will no longer be feasible to construct a general converter with
simple means.

224

6 API Refactorings

Migrating an
Application Layer by
Layer

6.7 Application Migration with Incompatible
Subsystem Changes

Unless the subsystem developers alleviated their modifications of the
subsystem API by using the aforementioned tags, the application
developers will be in for an unpleasant surprise: after the subsystem’s
new version has been installed, the application will be no longer com-
pilable. The compiler will generate countless error messages. Unfortu-
nately, the number of error messages provides little valuable informa-
tion. Several of them will be sequence errors, so that less changes must
be made than the mass of messages at first suggests. But single migra-
tion steps can in turn produce new sequence errors — for example,
because a developer notices that a parameter list of a method in the
application must be adapted. All in all, the demand for adaptation can
hardly be precisely projected. This creates a lot of insecurity for further
project planning. Thus the migration to a new subsystem version
becomes a relevant risk.

In addition, the application will remain uncompilable during the
entire migration period. This means that neither the application itself
nor tests can be executed. Whether all single parts of the application
migrated correctly or not will only become clear at the very end of the
migration process.

This problem can be countered with a stepwise, new construction
of the application. Please proceed as follows:

1. Install the new version of the subsystem.

2. Create a new, empty version of the application project, includ-

ing references to the new subsystem version.

Copy the application’s lowest layer into the new project.

Make the copied application classes compilable again.

5. Change the copied application classes so that they will pass the
tests again. The tests will also let you discover and resolve se-
mantic conflicts (which requires a good test coverage, of
course).

6. Copy the next application layer. Proceed with step 4.

bl

Figure 6-3 visualizes this procedure. However, of course the migration
effort will not become smaller when these instructions are being fol-
lowed, but at least the already migrated parts of the application will be
compilable and run the according tests. This migration method will
significantly reduce the risks involved.

6.8 Tips for Designing APIs

225
_ Fig. 6-3
| Application 1] Application .
Layer 2 Migration > T Layer 2 New Construction of
W / Vi
the Application for
. — - Migration
~1 Application) . [_]Application] Application
[Layer1 Mgration > | Layer1 Layer 1
e oL e vz
Subsystemn Evoiddion’ Subsystem Subsystem Subsystemn
W iy V2 V2 vz

6.8 Tips for Designing APIs

Only a few, simple tips will help to design APIs in such a manner that
they will be stable regarding changes.

Design Tip 1: Planning Inheritance

Inheritance must be planned. If inheriting from an API class hasn’t
been explicitly planned and scheduled beforehand, the class should be
set to final. Methods that are not explicitly meant for overwriting
should be declared final or private. Methods that in principle inherit
from subclasses but do not belong to the class’s normal API, can be

labeled protected.

The keyword final constitutes a very powerful restriction for clients
and can thus lead to problems. Especially when writing tests with
JUnit, often scenarios will be created where a referenced class must be
replaced by a specific version (e.g. Mock or Dummy). If the referenced
class has been declared final, the testability via Mock or Dummy
classes (which, as a rule, inherit from the class) will be impaired. Inter-
faces come in handy here: the actual implementation class is declared
final, whereas the interface can be utilized for Mock and Dummy
implementations.

Design Tip 2: Avoiding Inheritance

If inheritance between API classes can be avoided, it should be
avoided: otherwise API clients can build on these inheritance relations.

Design Tip 3: Abstract Implementations for Interfaces

API clients that implement an API interface will become more stable
regarding changes to the interface if they do not directly implement the
interface, but inherit from an abstract class. If a new method is added
to an interface, a default implementation will be defined in the abstract
class, so that API clients must not be adapted.

226

6 API Refactorings

Fig. 6-4
Abstract
Implementations for

Interfaces

Here, we are facing an area of potential conflict: In the chapter
about architecture smells, we argued that list-like inheritance hierar-
chies point at speculative generalization. Now, in this chapter, we are
suddenly suggesting use of exactly these list-like inheritance hierar-
chies. The reason for this suggestion is easily explained: In the case
depicted here, the list-like inheritance hierarchy has deliberately been
applied in order to smooth the way for modifications of subsystem
interfaces. This is an ostensive example of the fact that not every smell
automatically signals the existence of a problem.

Of course the abstract implementations for interfaces will function
only as long as the client classes implement only a single interface. If
several interfaces are supposed to be implemented, inheritance from
several abstract implementations will prove impossible (at least in lan-
guages with single inheritance).

A way out of this dilemma is provided by the Adaptable pattern
used in Eclipse (see [Gamma & Beck 03]).

Component

<<Interface>>
Customer

JAN

|AbstractCustomer|
JAY

Application

| MyCustomerl

Design Tip 4: Small APIs

The smaller the API is, the lower the probability will be that the API
must be changed incompatibly. Subsystems should be designed in such
a way that as many classes as possible are hidden behind an as small as
possible API.

All elements should have as little visibility as possible.

Design Tip 5: API in Its Own Packages

6.9 AnExample 227
If the API as well as the implementation of a subsystem are respectively
organized in packages of their own, changes to the implementation
can be easier kept separate from the APL
Fig. 6-5

Application

—

ComponentAPT

—

ComponentImpl

Design Tip 6: Unambiguous Class Names

Class names in a subsystem API should be unambiguous, even without
package names. Otherwise, problems can arise during migration when
classes are moved into other packages.

Design Tip 7: Explicit Default Constructor

Each class should have at least one explicit constructor to prevent the
compiler from generating the default constructor. Otherwise, the com-
piler-generated default constructor can be deleted ‘accidentally’ when
a parameterized constructor is added.

6.9 AnExample

This section aims at clarifying the previously explained principles of
API refactoring, using the framework of a more comprehensive exam-
ple. To this end, we will choose the example of a time recording system
for IT consultants. The consultants can access the system via a web-
based interface to feed in their work hours. The values fed into the sys-
tem form the basis for payroll accounting as well as for generating
invoices to customers>.

5. This example is also used in the chapter on database refactorings. It is
described here in its entirety so that one can read both chapters independently
from each other.

Division between API
and Implementation

228

6 API Refactorings

Subsystems in the
Time Recording

Subsystem Web

Subsystem Report

Fig. 6-6
Subsystems of the
Time Recording
Example

6.9.1 Our Starting Point

The subsystems are displayed in Figure 6-6. The consultants access the
system via the subsystem Web. The accounting department uses the
subsystem Report to produce the required print lists and analyses.

The subsystem Web works with the subsystem Business Objects
which provides concepts such as Employees and Time Entries. These
business objects are saved in the database and reconstructed from the
database with the subsystem Administration. To this end, a purchased
subsystem DB is utilized.

The subsystem Report employs the subsystem Analysis in order to
carry out all necessary analyses for the print lists (e.g. all hours for
each employee and for one project respectively). Of course, the sub-
system Analysis uses the subsystems Business Objects and Administra-
tion to access the persistent business objects. The print lists are created
with the aid of a commercially available report tool (subsystem Reporz
Tool).

Of course, the subsystem Amnalysis uses the subsystems Business
Objects and Administration to access the persistent business objects.
The print lists are created with the aid of a commercially available
report tool (subsystem Report Tool).

y 7
ul
Report Web
i i
I I
: : v
| A |ITTTTTEEEEEEE ml
I L | 1
I I 1 I
] T I T
: Domain S 1 sl
| | Model T Bt SN
I 4 I L J
: Analyses =" : Administration
1 1
| W
| T . | T
e X | -
! Business Objects €—--—--—— i =
| | =
| i &
I
S — . :
| |
¥ |
T
Tech] |
! i
N
—— i
I
Report-Tool I L =
v

The subsystems are arranged in three non-strict layers: user interface
(UI), domain model and technology.

6.9 AnExample

229

At its core, the time recording system builds on the business
objects displayed in Figure 6-7: Time Entries holds a central position.
Besides date, start and end time, it contains references to the Project,
the project’s Activity and the Employees.

Time Entries

-date
-start time
-end time

Employee

L

| Empioyee]

—]
1

1.7

The subsystem Business Objects has a special role in our example. It is
used by many other subsystems, and its API contains all classes of the
subsystem. Consequently, we are confronted with the architecture
smell ‘subsystem API too large’ here. In our example, this smell is
wanted though. The subsystem Business Objects shall provide the
vocabulary for the other systems’ communication among each other.

Based on this vocabulary, the API of the subsystem Administration
looks as follows:

public interface Administration {
public void enter (Time Entries z);
public void cancel (Time Entries z);
public Time Entries[] getEntry
(Project p, int year, int month);
public Time Entries[] getEntries
(Employee m, Employee);
public Time Entries[] getEntries
(Employee m,
int year, int month, int day):;

The Business Objects

Fig. 6-7
Business Objects

API of the Subsystem
Administration

230

6 API Refactorings

The New Object
Model of the Business
Objects

Fig. 6-8
Business Objects
after Restructuring

6.9.2 The Reasons for this Refactoring

The modeling of the subsystem Business Objects strongly influences
the subsystem Administration’s API and thus also the interaction of
Analysis and Administration.

Basically, we have to implement the respective low-level functions
for most analyses in Administration. The business objects are too ‘stu-
pid’ to allow the subsystem Analysis to execute complex functions on
them. Theoretically, it is also possible for the subsystem Analysis to
directly access the database. However, this would also mean that the
subsystem Administration no longer encapsulates the database, thus
making modifications of the database schema more difficult.

Therefore, the subsystem Business Objects should be restructured
in such a way that it becomes ‘smarter’ and the API of the subsystem
Administration does not inflate so strongly.

6.9.3 The Goal of this Refactoring

This object model of the subsystem Business Objects shall now be
modified in such a manner that the model of the core business objects
will look as follows: each one of the Employees has got a Month
Folder for each month with a Calendar Sheet for every work day. On
the Calendar Sheet all Time Entries are recorded, including start and
end time, Project and Activity in the project (see Figure 6-8).

Employee
Month Folder

Time Entries

-start time
- -end time

6.9 AnExample

231

With this restructuring of the subsystem Business Objects, we venture
deep into the whole system’s vocabulary. We should expect a demand
for comprehensive restructuring measures of the entire system.

Here, we are going to focus on the refactoring’s impact on the API
of the Administration subsystem. We can imagine the new API as fol-
lows:

public interface Administration {
public void save (Employee m);
public Employee getEmployee
(String name) ;
public Employee[] getProjectEntries
(Project p);

}

In principle, it would be possible to leave the old methods in Adminis-
tration and simply set them to deprecated.

public interface Administration {
public void save (Employee m);
public Employee getEmployee
(String name) ;
public Employee[] getProjectEntries
(Project p);

/**
* @deprecated
*/

public void enter (Time Entry z);

/**
* @deprecated
*/

public void cancel (Time Entry z);

/**
* @deprecated
*/
public Time Entry[] getEntries
(Project p, int year, int month);

/**

The New API of the
Administration
Subsystem

Backwards-
compatible API of the
Subsystem

232

6 API Refactorings

Different Teams for
Each Subsystem

Omnipotent Business
Objects

* @deprecated
*/
public Time Entry[] getEntries
(Employee m, int year, int month);

/**
* @deprecated
*/
public Time Entry[] getEntries
(Employee m,
int year, int month, int day);

}

Regrettably, this does not solve the problem of how changes of the
subsystem Business Objects’ API should be dealt with. There, not only
the interfaces of the classes have changed, but also the relations
between the classes themselves were completely rearranged.

6.9.4 Refactoring Procedure: Business Objects Omnipotent

We will proceed based on the assumption that the single subsystems in
our example are developed by different teams. In the course of a sub-
system’s refactoring, it is therefore not feasible to reconstruct all this
subsystem’s dependent subsystems. We must find a way to execute the
refactoring step by step, and in such a manner that the subsequent
migration will cause as little effort as possible.

The evident refactoring course would be to model the subsystem
Business Objects in such a fashion that it can be used like the old sub-
system. To this end, all classes with their respective methods would be
kept and the new methods merely added to them. Naturally, the old
methods would be set to deprecated to indicate that migration must be
directed at the new methods. The outcome would be the class structure
that can be seen in Figure 6-9.

6.9 AnExample 233

Fig. 6-9
Backwards-
compatible Subsystem

Employee

Business Objects

Month Folder
Calendar Sheet

¢

Time Entries

-start time
* -end time

Activity

This example too proves that a large refactoring will often lead to an
initial deterioration of the system’s structure. Here, we have provoked
two extremely bad smells because we created two cyclical relations.
For this reason it is pivotal that we finish our refactoring: In the next
version of the subsystem Business Objects, the cyclical references will
be gone, as will be the deprecated methods.

Anyhow, the ‘deteriorated’ version of the subsystem will enable us
to adapt the remaining application to the business objects’ new struc-
ture. Likewise, we will let the API of the subsystem Administration
‘deteriorate,’ so that both the old and the new structure can be pro-
cessed.

Afterwards, the deprecated methods are removed from the API.
We will get the targeted API of the subsystem Administration.

public interface Administration { New API of the
public void save (Employee m); Subsystem
Administration

public Employee getEmployee
(String name) ;

public Employee[] getProjectEntries
(Project p);

234

6 API Refactorings

Duplication of the
Subsystem Business
Objects

Preconditions for
Programming a

Converter

6.9.5 Refactoring Procedure: Duplicating Business Objects

Another option for a step by step restructuring is duplication of the
subsystem Business Objects. First, a new subsystem labeled Business
Objects2 is created in the same location as the subsystem Business
Objects.

In this subsystem Business Objects, all classes are then set to dep-
recated. The new subsystem Business Objects2 contains — besides the
new business object classes — a converter that is capable of transferring
object structures of the subsystem Business Objects into object struc-
tures of the subsystem Business Objects2 and vice versa. This gives us
the opportunity of restructuring the remaining parts of the application
step by step. Once the application has been completely restructured,
both the converter and the subsystem Business Objects will be deleted
and the subsystem Business Objects2 renamed into Business Objects.

To enable programming of such a converter for object structures
while keeping the effort to this end acceptable, the object graphs must
be rendered convertible without information loss. In our example, the
conversion of a time entry of the old model into Employee with his or
her Time Entries is only feasible if access to the database is possible.
There, all further time entries for Employee must be determined. Dur-
ing reverse conversion, the opposite can easily occur: too much infor-
mation is provided for one class Time Entries. In that case, several
Time Entries for one Employee, based on the old model, must be gen-
erated.

This problem can be addressed by creating a ‘streamlined’ model
of the new business objects, i.e. one that allows conversion without
information loss (see Figure 6-10).

In this ‘streamlined’ model, one employee is always assigned one
calendar sheet, and each calendar sheet only one time entry. In effect,
the time entry’s date information has been moved to a class of its own:
the class Calendar Sheet. Additionally, the uses relation between Time
Entries and Employee has been reversed. Now, the business objects’
new structure can relatively simply be changed with the help of a con-
verter.

6.9 AnExample 235
— Fig. 6-10
_mp oyee The ‘Streamlined’
1 Model of the New

Calendar Sheet

Time Entries

-start time
1 -end time

Activity

As soon as we deployed the new object structure, we can install the

new API of the Administration system:

public interface Administration {
public void save (Employee m);
public Employee getEmployee
(String name) ;
public Employee[] getProjectEntries
(Project p);

}

In the next step, the refactoring of the business objects will be com-
pleted. The new class Month Sheet and the transition from 1:1 rela-
tions to 1:N relations is relatively easily accomplished.

6.9.6 Evaluation of Both Approaches

The application of the first refactoring option did not require any par-
ticular amount of creativity. It did have the disadvantage of degenerat-
ing the system structure though. In a very large system, this can have
significant negative consequences. Therefore, this kind of ‘pollution’
must be eradicated as soon as possible.

The second option created far less ‘pollution’ of the system due to
use of the converter. Especially the dependent system’s APIs did not
inflate. The duplication of the subsystem Business Objects definitely
constitutes a smell (code duplication), but both units are strictly kept

Business Objects

New API of the
Subsystem

Option 1

Option 2

I 236

6 API Refactorings

separate. Of course, it is important to finally delete the old version of
the subsystem as soon as possible.

The second option seems to be more appealing for migration, but
unfortunately it is not universally valid. If classes from the subsystem
Business Objects had inherited from other subsystems, writing a uni-
versally applicable converter would have become impossible. Convert-
ers will work well if it is guaranteed that no subclasses exist. This is the
case if at least all dependent subsystems are available for analysis, or if
constructive subclasses have been excluded, for example through
declaring the classes of one’s subsystem final®.

Excursion: Black Box Refactoring

A contribution by Jens Uwe Pipka
(jens-uwe.pipka@daedalos.com, Daedalos Consulting)

One often-made implicit assumption during a refactoring process is
that the entire code basis of a software system is at the programmers’
disposal. If this is the case, all relations and uses of a subsystem to be
refactored are known. They can be analyzed and adapted accord-
ingly. This procedure constitutes a so-called White Box Refactoring,
because the changes are made to the whole system. After the whole
system has been adapted, the refactoring is complete. No further
steps are required. This scenario is shown in the following figure:

System
“under Refactoring”

White Box Refactoring

6. See comments regarding testability in chapter 6.8.

6.9 AnExample 237

We are facing a more difficult situation if a refactored system has a
number of potential clients that are not familiar, as it is e.g. the case
when object-oriented libraries or a framework are applied. In such a
situation, different systems use the common code basis. Therefore,
we speak of a base system. An external subsystem that uses and spec-
ifies this base system is called the using system (see next figure).

If a refactoring is carried out in the base system, it is in most
cases not feasible to identify all potential effects on the using systems,
because multiple couplings between systems are possible. Thus, not
all options can be fully taken into account during refactoring pro-
cesses concerning the base system: A so-called Black Box Refactoring
takes place, since there is no guarantee that each combination of the
refactored base system and the using system will display the same
semantic behavior in the future.

Base System
“under Refactoring”

Using System

.
\\ }Eﬁrf‘?tctoring
1 L

Black Box Refactoring

The complexity of identifying possible effects on a using system
during the refactoring process is caused by the fact that object-ori-
ented systems in principle allow two orthogonal ways of base system
usage and specialization:

1. Call of those methods that are accessible via the interface of a
class; also called Black Box Usage.

2. Specialization of a class through inheritance; also known as
White Box Usage.

238

6 API Refactorings

In the first-mentioned case, a refactoring in the base system can be
executed with relatively few problems, because the internal structure
is to a large degree encapsulated and changes are thus transparent.
Only changes to the public interface of a class are critical, such as e.g.
the removal or addition of a method. However, the use of refactoring
tags enables proactive communication of these modifications and
even — as described in chapter 6.4 — mostly automated adaptation in
the using system.

The second case, however, has yet another aspect that must be
considered when refactoring the base system: changes in the system
structure can have additional semantic effects on the using system,
because the latter is implemented based on a specific syntactical
structure. Inheritance causes the structure of the code basis to lie
open and thus forms the basis for developing the using system. As a
consequence, changes to this structure can affect the conditions
present at implementation and therefore directly affect the program’s
semantics. Modifications of the program’s semantics cannot be com-
pletely handled with refactoring tags alone, because refactoring tags
are only meant to deal with changes of a class’s interface. The com-
plete, implicit interaction of base system and using system is not cov-
ered by the capabilities of refactoring tags.

Thus it is necessary to establish some additional procedures to
ensure that a refactoring will not alter the semantics of the whole sys-
tem: To this end, information for changes to the public interface of a
class must be checked — not only in regard to its callers, but also in
the context of the inheritance hierarchy, while keeping the using sys-
tem in mind. Possible conflict situations have already been addressed
in the section about compatibility classes in chapter 6.3. It should not
go unmentioned though that conflicts in the inheritance hierarchy
cannot be sufficiently solved by ‘mechanically’ changing all refer-
ences, because such an action may create significant semantic con-
flicts.

In effect, not only the isolated migration efforts in the base sys-
tem must be considered, but moreover their impact as well as the
required migration steps in the using system. In the following, we
will discuss this problem and illustrate it using two examples. We
will examine in how far usage and specialization must be distin-
guished in the refactoring process and whether a semantic conflict
analysis is required or not.

6.9 AnExample

239

Semantic Conflict Scenarios through Black Box Refactoring

The difficulties encountered in Black Box Refactoring can be demon-
strated with a simple example. In our example, the base system
implements an accounting system that generates invoices when one
or more products are purchased. One component of the accounting
system is the discount module: This module allows calculation of a
certain discount based on a product price. In our example, the dis-
count functionality is implemented as follows:

public class DiscountOffer {
int individualDiscount;
public DiscountOffer() {
individualDiscount = this.initialDiscount();

public int initialDiscount() {
return 0;

public void setDiscountUser(Customer customer) {
this.individualDiscount =
this.initialDiscount() + 0;

public int getDiscount(int price, Customer customer) {
this.setDiscountUser(customer);
return price * individualDiscount / 100;

public int getDiscount(int price) {
return price * individualDiscount / 100;

}

The customer discount is composed of an initial discount granted to
all buyers, whether they are registered customers or not. This per-
centage is determined by the method initialDiscount(). Persons who
are already registered customers can be given an additional discount.
This percentage must be determined with the method setDiscoun-
tUser(Customer). Within the generic functionality of the base sys-
tem, both values are set to zero percent.

This base system is distributed to various users, who can define
different specifications for the generic discount function provided by
the base system, depending on the kind of discount offer they wish to
create. The concrete discount offer is implemented with the aid of the
inheritance mechanism in the using system.

A company wishes to give all its buyers an additional discount of
five percent as part of their summer discount offer. Regular custom-
ers (who are already registered) are not supposed to get this extra dis-
count. Accordingly, only the initial discount must be adapted and set
to five percent. This requirement will be implemented in the using
system:

240

API Refactorings

public class SummerDiscountOffer extends DiscountOffer {
public int initialDiscount() {
return 5;

}

A test of the using system shows that the requirement is met as
desired. The call summerDiscountOffer.getDiscount(100) returns
the result that a discount of five Euro has been given based on a price
of 100 Euro.

Independent from the tests, the developers of the base system
continue to work on the accounting system’s implementation. To
prepare the implementation and usage of the class DiscountOffer for
extensions, they move the predefined values into two new instance
variables: initialDiscount and customerDiscount. They apply the
Inline Method refactoring in the constructor to achieve a more effi-
cient and clearly-structured implementation. Since the public inter-
face shall not deviate from that of the earlier version, the method i7i-
tialDiscount() is kept and adapted to the new structure. For better
legibility, only changes to the class DiscountOffer are listed below.

public class DiscountOffer {

int initialDiscount = 0
int customerDiscount =
public DiscountOffer()
individualDiscount =
//Inline Method

03
{
initialDiscount;

public int initialDiscount() {
return initialDiscount;

public void setDiscountUser(Customer customer) {
this.individualDiscount =
initialDiscount + customerDiscount;

}

The behavior of the class DiscountOffer in the base system is identi-
cal to the class’s behavior in the previous version, i.e. all tests return
the same results as before. The new version of the base system is now
ready for distribution.

The first step of integration with the system that implements the
summer discount offer initially appears to be successful, since no syn-
tactical errors occur and the whole system can be compiled without
problems. Nevertheless, the program semantics have changed, so
that the requirement is no longer met correctly. The call summerDis-
countOffer.getDiscount(100) now generates the result that no dis-
count will be given.

6.9 AnExample

241

The reason for that error is that — due to the Inline Method refac-
toring — the specialization of the method initialDiscount() is no
longer considered in the system, thus leading to a faulty initialization
of instances of the class SummerDiscountOffer and generating the
incorrect program behavior.

This altered behavior is caused by the fact that the call graph has
been changed during refactoring: the method initialDiscount() which
was originally called in the constructor is no longer called on. There-
fore, the specialization in the class SummerDiscountOffer is disre-
garded. This conflict will only be recognized when the base system
and the using system are analyzed together. As part of the refactoring
process on the base system level, this change poses no problem.

Even the application of refactoring tags will not help in this case:
the public interface of the class DiscountOffer has stayed the same.
In effect, no refactoring tags are defined and thus no changes are trig-
gered in the using system.

This example clearly demonstrates that an exclusively proactive
approach for describing the impact of a refactoring in the base sys-
tem is neither sufficient for the using systems, nor will an analysis
and test of the base system alone suffice. Only a comprehensive func-
tion test of the whole system will bring certainty that an integration
of basic and using system was truly successful. But even this
approach will only be partially helpful for error analysis: in order to
analyze the cause of the system’s semantic misbehavior, comprehen-
sive knowledge of the entire system is required. For that reason, inte-
gration of an automated, semantic analysis in the refactoring process
is advisable to offer programmers additional support during develop-
ment of a distributed system.

Gray Areas in Black Box Refactoring

Besides direct changes to the call graphs, especially so-called ‘Big
Refactorings’ will lead to constellations that literally provoke seman-
tic conflicts. The combination of different changes that are made in
the course of a refactoring will often lead into ‘gray areas’ that can-
not be resolved in the base system and that will only become visible
in combination with the using system.

242

6 API Refactorings

Particularly modifications that are meant to prepare the ground
for extending the base system are often dangerous. To illustrate such
a situation, we will now return to our accounting system example.
Based on the now familiar implementation, first a new discount offer
for the coming Christmas season is implemented in the user system,
granting a five-percent discount to all buyers as well as an extra five
percent to regular customers.

public class ChristmasDiscountOffer
extends DiscountOffer {
public ChristmasDiscountOffer() {
individualDiscount = initialDiscount = 5;

public void setDiscountUser(Customer customer) {
customerDiscount = 5;
super.setDiscountUser(customer);

}

In the base system a method getDiscount(price, customer) does
already exist to calculate a customer’s discount in a single step. For a
price of 100 Euro a customer will accordingly receive a discount of
ten Euro.

The introduction of the class Person as superclass of Customer
shall prepare the base system for future extensions. This plan is also
reflected in the implementation of the class DiscountOffer: the inter-
face for the method getDiscount(price, customer) is altered and the
parameter of the type Customer is changed to a parameter of the
superclass’s Person type. No change takes place for the callers, since
the generalization of a parameter for using this method is transpar-
ent.

public class Person { .. }
public class Customer extends Person { .. }
public class DiscountOffer {

public void setDiscountUser(Person person) {
this.individualDiscount =
initialDiscount + customerDiscount;

public int getDiscount(int price, Person person) {
this.setDiscountUser(person);
return price * individualDiscount / 100;

}
}

This change is in itself uncritical, but in connection with the user sys-
tem it results in a changed discount calculation because the special-
ization for setDiscountUser(customer) from the class ChristmasDis-
countOffer will no longer be called on. Thus customers will receive
the wrong discount amount of five percent instead of the offered ten
percent.

6.9 AnExample

243

This example clarifies that gray areas which cannot always be
eliminated inherently exist in refactoring processes. The application
of refactoring tags can help in this case: the Past tag is implemented
for the method set-DiscountUser(Person) here. Unfortunately, this
approach also has a disadvantage. All callers of this method must
execute an extra type cast of the object Customer after Person. This
contradicts the original idea of utilizing the options object-orienta-
tion has to offer and of keeping modifications of the base system
transparent for all callers through generalization of this method,
while also creating as little as possible (ideally no) demand for migra-
tion within the using systems.

Support of the Black Box Refactoring through Semantic Conflict Analysis

Both examples underline that distributed development in Black Box
Refactoring harbors the danger of creating semantic conflicts that
stem from the combination of base system and using system. These
conflicts can hardly be avoided by documenting the changes alone.

Here we must differentiate between two scenarios: In the first
scenario, we are dealing with changes of a class’s interface that have
to be communicated to the using system. This can be done via refac-
toring tags. Changes to certain categories of classes, their effects on
the using system as well as possible measures for avoiding or remov-
ing conflicts have been discussed in detail in chapter 6.5. In this
respect, this scenario is clearly structured and can be handled.

Things are different for the second scenario, where changes
occur in the inheritance interface itself: the using system must be
informed of these changes. The number of potentially possible con-
flicts exceeds that of those possible in the public interface: Adding to
them are the effects of changes to the internal structure and the
implementation of the base system itself. For example, changes to the
call graph can lead to errors in the combination of base system and
using system. The same is true for generalizations or specializations
on the class and method level that are not entirely alleviated by clas-
sic documentation concepts for a class’s interface. Their effects will
vary strongly, depending on which specializations are implemented
in the using systems.

244

6 API Refactorings

Since the number of possible effects of changes in the inheritance
interface is fairly large — even for simple refactorings — a reactive
innocuousness check is required besides a documentation of the
changes: On the one hand, this can be achieved by running an as
comprehensive function test as possible of the using system; on the
other hand, a semantic error analysis for certain error classes follow-
ing the integration of the modified base system will ensure that the
system’s behavior has remained semantically unaffected.

Semantic Error Analysis in the Refactoring Context

In order to recognize the semantic conflict situations discussed here,
information about inheritance structures as well as the call graph are
required — information also needed by refactoring tools to enable a
mostly automated execution of refactorings. One peculiarity of
semantic error analysis is that changes between the status quo prior
to a refactoring and the status quo after a refactoring do matter.
Without this differentiation, it is not possible to identify the conflict
situation depicted here.

This prerequisite proves critical particularly for the execution of
a refactoring in a base system without direct relationships to possible
using systems: the data needed for recognizing the conflict must be
obtained from both systems. Therefore, the call graph of the system
plays a pivotal role that goes beyond the scope of the actual refactor-
ing. In our first example, the conflict originated from the fact that a
call was removed from the base system and thus a specialization
from the using system was no longer observed.

Yet another obstacle must be taken into account: It does not suf-
fice to consider the current combination of the system consisting of
the refactored base system and the using system. Moreover, the con-
dition created by their combination must be compared for the base
system as well as for the using system before and after refactoring.
These prerequisites make it clear that recognition of a conflict based
on a concrete misbehavior can only take place on the using system’s
side. In addition, both variants of the base system must be available
to allow a comparison.

6.9 AnExample

245

Stepping over the system boundary between basic and using sys-
tem has yet another consequence: the release and thus integration of
the base system is not restricted to a single, atomic refactoring. To
enable an efficient development cycle on the one hand and a reward-
ing integration scenario on the other, a new version of the base sys-
tem must contain a series of changes. Here, we can distinguish
between an exclusive refactoring, exclusive continuous development
and a blend of the two. All variations have in common that modifica-
tions of the source code will bring about a large number of changes
in the program structure.

This distinction does hardly matter for semantic conflict analy-
sis, because occurrences of the described conflict situations are think-
able for all variations. However, evaluations showed that the number
of possible semantic conflicts in a refactoring cycle is particularly
high, because in a refactoring cycle most work takes place in existing
classes and methods which already supply their functionality to using
systems. The realization of new functionalities will rather lead to the
implementation of new classes and methods that are not yet in use —
a fact that reduces the danger of semantic conflicts. This confirms
that semantic conflict analysis, especially for large refactorings, is an
indispensable means of support for controlling and limiting the num-
ber of a refactoring’s possible consequences.

Further evaluations prove that a separation between pure refac-
toring cycles on the one hand and development cycles on the other
makes sense when developing a universal base system with a series of
possible clients. The integration of base and using system can be
treated in different ways in the base system, depending on the type of
change: Suitable integration steps (depending on the type of change),
for example the execution of a semantic conflict analysis exclusively
in the course of the refactoring cycle, can lower the risk of running
headfirst into an unrecognized misbehavior of the whole system
without losing the option of quickly integrating new functionalities.

Tool-based Recognition of Semantic Conflicts

Changes in the call graph of the base system can hardly be monitored
manually. Especially when the execution of a complete refactoring or
development cycle is examined, it is impossible to document all
changes in the form of additional tags. This is also the case for neces-
sary evaluations that must be carried out in the using system during
integration of the refactored base system.

I 246

6 API Refactorings

Therefore, it is necessary to automatically record the data, for
example by extracting the relevant data from the source code and
transferring it to a suitable meta model or by using the existing meta
information offered by a refactoring tool. In the next step, the actual
states before and after a refactoring must be evaluated to identify
possible conflict situations.

This procedure can algorithmically be realized as follows:

1. Determination of the potential for conflicts as the amount of
all changes of the base system before and after refactoring or,
respectively, the development cycle.

2. Analysis of the dependencies between the potential for con-
flicts and the using system.

3. Identification of concrete conflicts based on the identified de-
pendencies while applying adequate rules for conflict recog-

nition.
Refactored
Base System

Refactoring

Base System

Potential®
for
Conflict

L L

Using System

Potential for Conflicts through a Refactoring of the Base System

6.9 AnExample

247

In this context, the definition of a rule depends on the specific error
scenario. For our first example that does disregard method special-
ization, a suitable rule looks like this:

1. Determine the potential for conflicts consisting of all method
calls that have been removed from inside the modified basic
module.

2. Find all methods that have been overwritten by the basic
module in the using system and therefore have been special-
ized.

3. Identify the potential for conflicts as the amount of all meth-
ods found in step 2 that are also part of the potential for con-
flicts determined in step 1.

Analogously, rules for the recognition of further conflicts can be cre-
ated and integrated in the recognition algorithm. Here, most rules
operate based on a straightforward number of basic operations and
structural information provided by the software system. If these are
available, the definition of new recognition rules is in most cases fea-
sible with calculable effort.

This principle of conflict recognition is realized in combination
with additional semantic analyses in JaMB, the Java Migration
Browser. JaMB is a tool for the detection of semantic conflicts that
occur during the further development and migration of object-ori-
ented systems. It obtains its required information directly from the
Java byte code and stores it in a suitable meta model. More informa-
tion about JaMB can be found in [Pipka & Mezini 00].

Another approach to recognizing conflicts and making them
transparent during the development process is the backward compat-
ibility tester. Here, the interfaces of the contained classes are ana-
lyzed and incompatible changes are pointed out. However, this anal-
ysis is exclusively syntax-based. More information about this tool
can be found on IBM’s Alphaworks website
(http://www.alphaworks.ibm.com).

248

6 API Refactorings

6.10 References
[Bloch 01] Joshua Bloch: Effective Java. Addison-Wesley, 2001.

Bloch argues that inberitance must be planned. If inheritance from
a class has not explicitly been provided for, it should rather be pre-
vented (for example through setting the class to final).

In this book you will find — besides a number of very useful tips for
Java programming — an instruction for realizing typesafe and
expandable enumeration types (typesafe enums) in Java.

[Fowler 99] M. Fowler: Refactoring: Improving the Design of Existing
Code. Reading, Massachusetts, Addison-Wesley, 1999.

Not only does Fowler describe basic refactorings here, he also
introduces the distinction between public and published interfaces.

[Gamma & Beck 03] Erich Gamma, Kent Beck: Contributing to
Eclipse — Principles, Paiterns, Plug-Ins. Addison-Wesley, Eclipse
Series, 2003.

In this standard work about Plug-in development with Eclipse the
authors depict very diverse mechanisms realized in the Eclipse
framework. Among them are patterns that simplify evolution
between subsystems, such as, for example, the Adaptable mecha-
nism.

[Gosling et al. 97] J. Gosling, B. Joy, G. Steele: Java: Die Sprachspezi-
fikation. Bonn, Germany: Addison-Wesley, 1997.

A language specification for Java.

[Havenstein 03] Andreas Havenstein: Werkzeuge fiir die Migration-
sunterstiitzung von Anwendungen auf neue Rabmenwerksversionen.
Diploma thesis, Software Engineering Group, Dept. of Informatics,
University of Hamburg, Germany, 2003.

Here, tools for the handling of refactoring tags as well as imple-
mentation methods for these tools are presented. Also discusses
how much help converters can provide for migration.

[Havenstein & Roock 02] Andreas Havenstein, Stefan Roock: Refac-
toring Tags for Automatic Refactoring of Framework. In: Proceedings
of Extreme Programming Conference 2002, Villasimius, Cagliari,
Italy, 2002

This article is the first one to introduce the concept of refactoring
tags.

6.10 References

249

[JavaSoft 00] JavaSoft: How and When to Deprecate APIs.
Part of the Java2 Documentation, 2000.

Describes work with the deprecated tag.

[Lippert et al. 01] Martin Lippert, Stefan Roock, Henning Wolf, Heinz
Zillighoven: J[WAM and XP — Using XP for Framework Develop-
ment.

In: [Succi & Marcesi 01]. Pp. 103-117.

Hlustrates various experiences in the use of XP techniques (such as
refactoring) for Frameworks.

[Meyer 92] B. Meyer: Eiffel: The Language. Englewood Cliffs: Pren-
tice-Hall, 1992.

Meyer introduces the reader to the language Eiffel, which offers an
option for marking classes and methods as deprecated with the
keyword obsolete. Just like with using the deprecated tag in Java,
the compiler will generate warnings for obsolete elements.

[Pipka & Mezini 00] Jens Uwe Pipka, Mira Mezini: Weiterentwick-
lung objektorientierter Softwaresysteme: Risiken und deren Vermei-
dung.

In: Informatik 2000, Springer-Verlag, 2000.

This work provides an overview of important migration conflicts
in literature and practice, which are further scrutinized using Java.
The focus is on conflict scenarios that can emerge during the inte-
gration of more complex subsystem versions. To support the inte-
gration process, a tool-based solution for the recognition of such
conflicts is introduced as an example: the Java Migration Browser
JaMB.

[Rivieres 01] Jim des Rivieres: Evolving Java-based APIs. http://www-
eclipse.org/eclipse/development/java-api-evolution.html. 2001.

Depicts possible API changes and their compatibilities. The focus
is only on binary compatibility, not on source code compatibility
though.

[Roock 01] Stefan Roock: eXtreme Frameworking — How to Aim
Applications at Evolving Frameworks. In: [Succi & Marcesi 01]. Pp.
71-82.

Analyses of problems related to API changes and some ideas for
solutions.

250

6 API Refactorings

[Roock 04] Stefan Roock: Unterstiitzung fiir die Evolution und Migra-
tion objektorientierter Systeme. Ph.D. thesis Software, Engineering
Group, Dept. of Informatics, University of Hamburg, Germany. To be
completed in 2004.

In this thesis, the conceptual and basic principles of refactoring
tags (called migration tags bere) are developed and further elabo-
rated on.

[Succi & Marchesi 01] G. Succi, M. Marchesi (Hrsg.): Extreme Pro-
gramming Examined. Reading, Massachusetts, Addison-Wesley,
2001.

Conference publication of the XP-2000 Conference.

[Szyperski 97] C. Szyperski: Component Software. Harlow, England,
Addison-Wesley. 1997.

Standard work about components that also offers insights on some
of the aspects discussed bere.

203 I

7 Tool-based Detection and
Avoidance of Architecture Smells

By Walter Bischofberger and Henning Wolf

Architecture smells are difficult to detect ‘manually,” since to this end
information from the entire source code must be collected and con-
densed. As we already pointed out in chapter 3, IDEs cannot be used
for architecture analyses because they visualize relations between
classes and packages. For an analysis of architectural aspects, develop-
ers must work on the levels of class, package and subsystem relations
and not on the method call level.

In this chapter, we will demonstrate how architecture smells can be
found with tool support and how large refactorings can be closely
monitored. Our tool of choice will be Sotograph, a product of Soft-
ware-Tomography GmbH. We decided to focus on a commercially
available tool because as far as we know there are currently no other
tools in existence that support both architecture analysis and visualiza-
tion for object-oriented systems in a similarly comprehensive manner.

7.1 Specifications of an Analysis Tool

Chapter 3 discusses that architecture smells can be found on different
abstraction levels (class, package, subsystem and architecture). In con-
sequence, tools for the detection of architecture smells must be able to
handle these or related abstraction levels. Depending on the abstrac-
tion mechanisms offered by the supported programming language,
more or less high-level abstraction levels must be user-definable.

Based on the abstraction levels at the developers’ disposal, the fol-
lowing analyses can be executed:

Architecture Analysis, i.e. an analysis of how well the source code
observes the restrictions specified in the architecture model (who is

Introduction

Levels of Abstraction

Types of Analyses

204

7 Tool-based Detection and Avoidance of Architecture Smells

Interpretation of

Analysis Results

Continuous

Monitoring

Ad-hoc Analyses

Support of the
Refactoring Process

allowed to use whom, and who is allowed to inherit from whom),
and where these restrictions are not observed.

Cycle Analysis, to analyze the cyclic relations between artefacts.
More precisely, this means the search for classes, packages and
subsystem groups that are strongly coupled in cyclic relations.
Metrics-based Analysis, in order to identify potential architectural
problems using metrics.

All three analysis types deliver distinct indications of a multitude of
problems that will range from those that can be neglected to the ones
that are quite serious. To assess the seriousness of a problem as effi-
ciently as possible, it is important that the tool provides explanations,
or at least the basic data of its analysis. In this context, visualization —
for example with class diagrams or package graphs — is a major issue.
Particularly since architectural problems, after all, become manifest in
unexpected and unwanted cooperation of artefact groups, graphs can
make it much easier to understand such cooperation structures.

It is very laborious to analyze a version of a software system in
detail. In most cases, the members of a project team who possess the
required knowledge to conduct such an analysis will be highly in
demand. This is another reason why it is unrealistic to continuously
monitor a software system’s quality without adequate tool support,
even though continuous monitoring would be the most useful
approach in such a situation.

Tools that are suited for the continuous monitoring of large soft-
ware systems will only issue information that has changed since the
last analysis was conducted and will also filter it based on its rele-
vance. A metrics tool, for instance, will only show those metrics values
that were already bad a week ago and have gotten either worse or bet-
ter since. An architecture tester will merely display new architecture
violations. In an ideal case, the weekly time exposure for interpreting
the obtained data can be reduced to under half an hour.

In big projects, frequently questions will come up that cannot be
answered with the aid of pre-defined analyses. Therefore, a tool for
large-scale software analysis should offer users an easy-to-learn mech-
anism to enable them to formulate new metrics and ad-hoc queries.

Depending on the kind of restructuring that is needed, the execu-
tion of a large refactoring can take place over a rather long period.
Without careful organizing it will soon become difficult to determine
what parts of the refactoring have already been carried out, and to
what extent the architecture’s status quo already approximates the tar-
geted architecture. The latter question can be answered precisely with
the right tool. Furthermore, a tool can provide a lot of useful informa-

7.2 Architecture Analysis with Sotograph

205 I

tion about a refactoring’s present stage if it has monitored the develop-
ment of a software system over a longer period. For example, it can
point out what classes have been modified in which subsystems, and
which methods of these classes have been newly created, deleted or
changed.

Typically, modern software systems consist of distributed systems
which are tied into different processes on various machines and man-
aged at runtime by application servers, for instance.

If one considers only the static relations of such a system exclu-
sively from a language point of view, one will see a quantity of isolated
parts, e.g. Enterprise Java Beans or .Net components. Apparently these
are not cooperating, because they don’t use each other directly, but
solely communicate via the application server. Architectural analyses
of such systems will only make sense if the tool for the analysis of dis-
tributed systems can handle various interprocess communication
mechanisms and component models. Then distributed systems, includ-
ing their relations beyond processes, can be analyzed and visualized as
a whole.

7.2 Architecture Analysis with Sotograph

In this chapter, we will elaborate on how to use the Sotograph as a tool
for analysis and scrutinize its role as an analyzing software system,
that is, we will apply Sotograph to versions 0.90, 0.95 and 0.96 of
Sotograph’s source code. We will use relatively old versions because
from version 0.96 onward Sotograph has been used to further its own
development. Thus the newer versions will deliver less interesting
results for architecture testing.

The underlying concept of the Sotograph is derived from comput-
erized tomography as it is applied in medicine, i.e. it extracts — just like
a computer tomography — as much information as possible about the
system it examines, before it commences actual analysis. For software
systems, its analyses comprise byte and source code, which will yield
information about references, artefacts on the method level, fields,
classes, packages and relations between these elements. Sotograph
stores this information in a relational database and then proceeds to
make available a number of closely integrated tools in order to analyze
and visualize the gathered information. At present, Sotograph pos-
sesses analyzers for Java, C++ and C.

In addition, Sotograph can manage information that encompasses
a series of a software system’s versions in a database, thus enabling
analysis of a system’s changes over time.

Analysis of
Distributed Systems

The Underlying
Concept

I 206

7 Tool-based Detection and Avoidance of Architecture Smells

Abstraction Support

Identifiable
Architecture Smells

Moreover, information about the (desired) architecture model can
be fed into Sotograph’s database. This extra information will serve as
a basis for analyzing the system’s architecture.

With classes, files, packages, subsystems and tier architectures, Soto-
graph supports five abstraction levels on which analyses can be con-
ducted. Whereas in object-oriented languages classes are surveyed on
the lowest abstraction level, for procedural languages — such as C — it
is important to have the abstraction level ‘file’ at hand. Moreover, files
(and directories) constitute the entities that physically structure the
code (e.g. several classes in one file).

For systems implemented in Java, the packages defined in the
source code are used directly as an abstraction level. Since only very
few programming languages offer an abstraction level that is equiva-
lent to the Java package, Sotograph will aggregate all files located in
the same directory in a package of the same name as the directory for
these languages.

Packages can be combined to form subsystems using a subsystem
description language. For each subsystem, it can be defined where its
explicit APL is located (if applicable). For example, a subsystem should
only be used via certain interfaces that are placed either in a subpack-
age ‘interface’ or directly in the subsystem’s root directory. Other ref-
erences from outside this subsystem constitute an architecture viola-
tion. The subsystems form the abstraction level on which the system’s
architecture can be reviewed. For small and medium-sized software
systems, one subsystem model will normally suffice. For large software
systems, often several subsystem models are needed for the modeling
of architectural levels that are relevant for analyses.

Building on one subsystem model each, tier architectures can be
specified. These tier architectures serve the purpose of limiting the
amount of relations that are permissible between subsystems.

Architecture testing with Sotograph allows identification of the fol-
lowing architecture smells:

Subsystem-API bypassed (3.5.5)

Upward references between layers (3.6.2)

Strict layering violated (3.5.3)

Relations between product-specific subsystems of product line
architecture (briefly mentioned in 3.5.5)

The following graphic (see Figure 7-1) exemplifies these architecture
smells in a 3-tier architecture.

7.2 Architecture Analysis with Sotograph 2071

) . Fig. 7-1
Tier Architecture Architecture
Strict layering
violated Product 1 Product 2 Violations
——— s P e S ——
e > > Dependency Surface
within a layer
\ / (optional) |
Violation of the |
subsystem API:
always illegal
= \ B
4 ain
r Y Es v Layer
Upward
reference:
always illegal

lllegal Uses Relati >

Before we can begin with the actual architecture analysis, we must first Definition of a

define at least one subsystem model and one architecture model. Subsystem Model
Sotograph defines subsystem models with a simple subsystem

description language. Basically, there are two ways of describing a sub-

system:

There are rules that specify how package trees will be aggregated
in subsystems. The following rule, for instance, leads to the genera-
tion of one subsystem for each of the three package trees.

RuleBasedSubsystem Public {
InterfacePath "";
Packages "com.sotogra.' (util|guiutil|plugins)'";

Using a regular expression, the packages statement defines
the root packages of the package trees that are combined
into subsystems.

The name of a generated subsystem will be derived from the
rule’s name and the name of the package tree’s root package,
e.g. Public.util.

The interface path statement defines the path from the pack-
age tree’s root to the package that contains the subsystem’s
API classes. In our example this is the root package.

[208 7 Tool-based Detection and Avoidance of Architecture Smells

Through counting the packages contained in it. This sort of defini-
tion is mainly used in generated subsystem models or in such
exceptional cases where a subsystem cannot be defined by rules.

Once a subsystem model has been defined and set as an effective sub-
system layer, the subsystems defined in this layer can be employed ana-
log to classes, files or packages in all tools offered by Sotograph. For
instance, all inheritance relations between subsystems can be visual-
ized (see Figure 7-2). The thicker the lines in the image, the greater the
number of inheritance relations existing between the subsystems.

Fig. 7-2
A Section of a
Subsystem Graph

«subsystem
Tools.metric

«subsystem:
Tools.graph

1

«sul:sysiem»_ «SU bsystem»
Base.annotation Tools.manager

1 ol metric -> Base.tool - 15 Inheritances
«subsystem» «subsystems»
Tools subsystem «subsystem» <subsystem» Base util

T Db Base table

1
«subsystems» «subsystems»
Tools.dbview <subsystem» Base projecttree

Base guiutil

]
«subsystem: «subsystems
Tools.browser <subsystem» Plugins

Base tool

]]
«subsystems «subsystems
Tools architecture Sting pidj

1
«subsystem:
Tools externaleditor

Definition of an Sotograph defines tier architectures with a simple architecture descrip-
Architecture Model tion language. In this language, one

defines the underlying subsystem model;
assigns subsystems or packages to single layers;

7.2 Architecture Analysis with Sotograph

209|

defines if the subsystems or packages of a layer are allowed to
mutually use each other, and whether the layer model is subject to

strict interpretation or not.

For comprehensive software systems, developers will often define sev-
eral architecture models that focus on various aspects as well as sepa-

rate architectures for large or complex structured subsystems.

The following is an excerpt from Sotograph’s architecture model

description:

ArchitectureModel Overview {
Uses Default; // used subsystem model
Architecturelayer Manager {

}

// layer may use all deeper layers
InterLayerUsage = True;

// the layer’s subsystems may

// mutually use each other
IntralayerUsage = True;

// subsystems contained in the layer
Subsystem Tools.manager;

Subsystem Access;

Architecturelayer ToolsAndServices {

}

InterLayerUsage = True;

// the layer’s subsystems may
// not mutually use each other
IntralayerUsage = False;

// selection of subsystems belonging to the layer

// with a regular expression
Subsystems "Tools. (["m] |met) .*";

Architecturelayer ToolInfrastructure {

}

InterLayerUsage = True;
IntralayerUsage = True;
Subsystem Base.annotation;
Subsystem Base.dbupdate;
Subsystem Base.migration;

Architecturelayer Frameworks {

Once an architecture model has been defined and evaluated, the illegal
relations that were found can be examined. First, we will take a look at
the list of illegal relations between subsystems (see Figure 7-3). The
table shows the number of architectural deviations between subsystem
pairs, sorted based on architecture smells. The last three columns con-
tain the values for Sotograph versions 0.95 and 0.96 as well as changes
that occurred between these versions®.

1

Analysis of Archi-

tecture Violations

|210

7 Tool-based Detection and Avoidance of Architecture Smells

Fig. 7-3
Overview:
Architecture

|-
¥

of Trend [for vi = 0.95 and v2 = 0.95 & | L |

wRefn...| subRefing [susmete.. | subRefed | emonwa | v [w2 [# e |
55365 Detat Db 55362 Detaut Base table UPWARD 829 788 -41
65965 Defaultt Db 55959 Default Base guiuti UPWARD 364 359 -5
B5366 |Defaut Tools architecture BS976 |Defaut Tools subsystem INTERFACE 30 28 F2
55955 Default Base annotation 55959 Defautt Base guiti INTERFACE 39 39 o
65959 Defaut Base.guati 65972 |Defaut.Tools manager uPwaRD 11 1 o
55361 Detfault Base projectires 55369 Detaut.Tools dbview UPWARD 1 1 0
65962 Default Base table 55959 Default Base guiti INTERFACE Gl Gl o
65963 |Defaut Base tool BS99 |Default Tools diview UPVWARD 2 2]
55963 Default Base tool 55871 Default Tools graph UPWARD 15 15 o
65963 Default Base tool 65975 Default.Tools resull UPWARD 8 8 0
55363 Detaidt Base tool 55376 Defaul Tools INTERFACE 2 2 0
55964 Default Base i 55959 Default Base guiti UPWARD 19 19 o
65955 DetautDb 65958 Defaut Baseannotalion UPWARD 123 h23 o
55965 Default Db 55964 Default Base util INTERFACE 7 ul o
65965 Default Db 65972 Detault Tools manager UPWARD 26 26 0
55365 Detaut Db 55376 Defaul Tools INTERFACE 5 5 0
55965 Defaultt Db 55977 Default Tools trend UPWARD i 28 o
65973 Detaut Tools metric 65977 |Defaut Tools trend INTRA ES ES o
55975 Defaul Tools resull 55972 Default Tools manager UPWARD 3 3 o
65976 Detault Tools subsystem 65964 Default Base uti INTERF ACE 42 42 0
55364 Detait Base util B5363 Detaidt Base tool UPWARD 0 2 2
55974 Default Tools query 55964 Default Base util INTERF ACE 94 96 2
B5%64 Defaut Base util 85972 |Default Tools manager UPVWARD 56 &0 4
55966 Default Tools architecture 55964 Default Base util INTERF ACE 38 42 4
65963 Default Base tool 65959 Default Base guiuti INTERF ACE = 36 5
55366 Detault Tools archdecture 85977 Detat . Tools trend INTRA 74 80 5
55965 Default Db 55963 Default Base tool UPWARD 738 02 B4

If you analyze a system for the very first time, it is reccommended that

you

get an idea of how badly the system is afflicted by architecture vio-

lations. This will be accomplished by marking the illegally referenced
subsystems in a subsystem graph (see Figure 7-4). Here, you can see
clearly that about one third of all subsystems of Sotograph are used in
a manner that is not permitted. At first sight, this might come as some-
what of a shock. However, our practical experiences have proven that

this

result ranks rather low on the scale of software systems that were

developed without architecture testing.

One prominent feature of tables displayed in Sotograph is that they often con-
tain ‘Id” columns. Based on these Id columns, commands can be given, evalu-
ations be started and graphs generated. This feature allows programmers to
use the same generic visualization infrastructure for the results of pre-config-
ured and user-specific evaluations.

7.2 Architecture Analysis with Sotograph

211|

In the next step of your architecture analysis, we will take a close look
at the list of architectural deviations to identify the sources of the
detected problems (again, see Figure 7-3). Usually we will encounter
quite a variety of problems that can easily be solved by moving classes
into another package or by moving packages into another subsystem.
In most cases, more than enough architecture smells will remain that
can only be cured with more complex refactorings.

Architecture testing should always take place parallel to other
project-related work. Therefore, it is important that the ongoing mon-
itoring process isn’t too time-consuming — at least not after the first
comprehensive analysis. Thanks to Sotograph’s Trend support this
demand is also realistic. The table’s last column (see Figure 7-3) dis-
plays those changes that took place between the last two selected ver-
sions of the system. In the context of a continuous monitoring it will
do to scrutinize the new ones as well as the eliminated architecture vio-
lations. Double-click on a table row to zoom in the package level first,

Fig. 7-4
A Marked Subsystem
Graph

|212

7 Tool-based Detection and Avoidance of Architecture Smells

Fig. 7-5
Architecture Violation
on the Package Level

the level of basic references next, and last into the source code. The fol-
lowing table (see Figure 7-5) lists all basic references for illegal rela-
tions between the packages architecture and jflex of the subsystems
Tools.architecture and Base.util. You will immediately recognize those
illegal relations that were already present in version 0.95 as well as the
four illegal relations that have crept into the system in version 0.96.

[Trend architecture exceptions between package architecture and jflex for v1 = 0.95 and v2 = .96 <@ | 9 |

[L T
refingid | refingSymbol | reteas | | reterenceType | loceity |+ changes |

189622 e parseArchitecturehModel) 189206 el_SyritaxErrerException |TYPEACCESS LOCAL NEW

189622 Jme_parserchitecturetodel() 189208 cl_SyntaxErrorException iTY‘PEJ\CCESS LOCAL HEW

189622 me_parseArchitectureModel() 169212 me_getLine() jCALL LOCAL MEW

189622 me_parsefrchitecturebodel) 189213 me_getCohamni) lcaLL LocaL new

189622 me_parsefrchitectureModel() 189206 ol SyntaxErrorException i’ivPEACCESS LOCAL SAME

189622 me_parsefrchitectureodel() 189206 cl_SyntacErrorException TYFEACCESS LOCAL SAME

189622 me_parsefrchitectureModel() (189206 el SyntaxErrorException TYPEACCESS LOCAL [SAME

159622 me_parsefrchitectureiodei() 169206 cl_SyntaxErrorException TYPEACCESS LOCAL SAME

189622 me_parseArchitecturehodel() 189206 cl_SyntaxErrorException |TYFEACCESS LOCAL SAME

139622 me_parsefuchitectursModel]) 189206 ol SyntaxErrorException |TvPEACCESS LocaL [samE

189622 me parsefrchiectureModel) 189206 ¢l SyntaxErrorException [TvPEACCESS LOCAL SAME

189622 :m)yse.hchledureml() :ISQ2CB cl_SyntaxErrorException TYPEACCESS LOCAL SAME

189622 e _parselrchtecturebModel) 189206 £l_SyritaxErrerException TYPEACCESS LOCAL SAME

189622 me_parsefrchitectureodei() 189206 cl_SyntaxErrorException [CATCH LOCAL [SAME

189622 me_parseArchecturebodel)) 189212 me_getLine() [CALL LOCAL SAME

189622 me_parsefuchitecturebodel) 189212 me_getLine() lcaLL LocaL [samE

189622 me_parseArchlectureModel) 189213 me_getCohemn() ‘:CALL LOCAL 'SAME

183622 me_parseArchitectureModel) 189213 me,_getCohamn() jcaLL LocaL [samE

189622 me p) [189213 e _aetCohamn() [CALL LOCAL [SAME

7.3 Architecture Analysis Based on Cycles

Sotograph allows the identification of cyclic relations between classes,
files, packages and subsystems. The related architecture smells and
their negative effects are depicted in sections 3.1.3, 3.3.2 and 3.5.2.

One fundamental problem of cycle analysis are combinatorial
explosions. Most of the commercial systems we have analyzed until
now are so closely coupled that thousands of cycles will be detected.
Thus Sotograph will search all cycles of the length 2 in a first step, then
eliminate those for further searching, and scan for continuously longer
cycles. This procedure enables interpretation of the cycle analysis’
results within a reasonable time frame without losing relevant infor-
mation.

At the beginning of any cycle-based architecture analysis, the most
sensible approach is to search for package cycles across subsystem
boundaries. The table below (see Figure 7-6) shows the results of that
query. One line represents a relation in a cycle, and all lines of the same
cycle Id represent the entire cycle.

7.3 Architecture Analysis Based on Cycles 213 |

[Package Cycles - Restricted to Focus: No , Localty All & | =Y | Fig. 7-6
Analysis of Cycles on

| Fiter | ~ I Help | the Package Level

pckgFr..| package fromname |pckgTold| packegetoname | cycle | rets |

279 tool 280 il 0 215 -

280 |uil 279 fool o 2 —

300 manager 280 util 11 264

280 util 300 manager I 60

272 cuiuil 280 util |2 184

260 util 272 [Guiuil 12 19

339 registry 230 util 3 19

280 il 339 registry |3 3

300 manager 265 server 4 2

265 server 300 manager 4 8

277 table 279 tool 5 174 i

279 tool 277 table 5 |E63

The first two lines point at a cyclic relation between the fool and wutil
packages. Since only two references exist from util to tool, but 215 ref-
erences in the other direction, it is safe to assume that the references
from wutil to tool should be eliminated. For further analyses, you can
zoom in the basic references level with a double-click. A second dou-
ble-click will display the corresponding source code. This view works
well if you start to break up cycles. Since Sotograph will break down
long cycles into short ones during analysis to avoid combinatorial
explosions, you must make a survey of where critical amassments of
cycles are present.

For this purpose, you must sort the table, listing the detected cycles
by package name. When this is done, you’ll recognize at a glance
which packages are involved in what number of many cycles. The tan-
gle surrounding such critical packages can be viewed best in a graph.
Figure 7-7 shows the graph that contains all packages which maintain
cyclic relations with the package tool. This graph exemplifies very well
how software systems start to ‘lump’ due to their constantly growing
number of cycles in the course of their evolution. It is pretty obvious
that it will take new developers quite an effort to familiarize them-
selves with such a chaotic dependency graph.

214

7 Tool-based Detection and Avoidance of Architecture Smells

Fig. 7-7
Packages in Relation
to the Package Tool

1
_.! projecttree
guiutil : license

A\ ~7 s

1

'implemenlation F

1

result

/] " i
// N
M dbview

model

In practice, it is not always wise to eliminate all cyclic relations from a
software system. On one hand, it can be advantageous to have two
classes using each other on the class level. On the other hand it often
takes too much effort to eliminate all unwanted cycles in systems that
were not developed with the aid of cycle analyses from the very begin-
ning. This is why support of a cycle analysis is indispensable: it helps
to distinguish existing cycles from newly introduced ones. This kind of
information is provided by Sotograph’s metrics tool.

7.4 Metrics-based Architecture Analysis

The central problem of any type of metrics-based software analysis is
the huge amount of metrics values that will be generated even for
medium-sized software systems. All this information must be exam-
ined and interpreted.

The fundamental prerequisite for an efficient metrics-based first
analysis is sophisticated tool support. Here are examples of what such
tool support can do:

Fast elimination of metrics results for parts of the system that have
already been recognized as being irrelevant or basically problem-
atic.

7.4 Metrics-based Architecture Analysis

215|

Explanation of a metrics value. Without an explanation, one has to
search the reason for each suspicious metrics value in the source
code and the IDE.

Visualization of metrics values. Particularly for high number of
couplings the graph is best suited for determining what a certain
value means.

For a regular analysis that proceeds parallel to other project work, it is
first and foremost important that developers review only ‘relevant’
values. In our experience, these will normally be metrics values that
were bad before and have now gotten worse, or metrics values which
were bad but have improved.

Figure 7-8 shows a part of the Trend metrics tool of Sotograph
with its ‘Problems Worse’ filter activated. Metrics underlaid in dark
color contain values that have not been filtered out. The selected Pck-
gCyclicRefPckg metrics calculates the number of packages with which
a single package maintains a cyclic relation. In this example, we can
see that the package base.tool that already caught our attention in the
cycle analysis described in the previous section has been cyclically cou-
pled with a new package between releases 0.95 and 0.96.

|Problems Worse = | [Nt Fitered = | Dispiayed [3 Total [75
k| o« | | - |versiont foss +] version2 [o9s ~]
Select Metri ..
4l Metrics - -~ y
= | [util |com sctogra.qualt base util 12 |4 |2
Ildl ’_Mame I registry com sotogra tools registry o 1 1

1
1..
1..
1
1

ii.iPc;:gMethMainﬁle . []
In this case, it would be interesting to learn if the number of packages
which have cyclic relations with base.tool constantly increases. This
information can best be obtained from the diagram in Figure 7-9. This
diagram proves that the increase occurred already between releases
0.90 and 0.95 — another indication that the package base.tool and the
packages closely coupled with it should be examined much closer in
the future, prior to any changes and expansions. In this way we can

Fig. 7-8
A Section of the Trend
Metrics Tool

[216 7 Tool-based Detection and Avoidance of Architecture Smells

prevent that new problems are introduced to the system, and eventu-

ally establish a more orderly system.
E] Trend for PckgCyclicRefPckg : tool
Actions

Fig. 7-9
Trend Chart

Trend chart for artifact tool

12.0

Metric value for metric PckaCyclicRefPcko

0.95
Version name

(Gioss]

After the diagram window has been closed, it makes sense to carefully
analyze what exactly has changed in base.tool’s vicinity. A double-
click on the metrics value will take us to the explanation in Figure 7-
10. Here we can see that a cyclic relation with package base.util has
been newly inserted. The package base.util could now be highlighted

7.4 Metrics-based Architecture Analysis

217|

in the last generated package graph, or one could look at the relations
between base.tool and base.util in detail.

IExplemtionformetric PckgCyclicRefPckg for tool Q@ | (3 |

| Filter | - | Help |
sourceld | targetid Identifyer | Scope If Chanl
279 1280 il [com.sotogra,qua!it.basemil NEWY
279 267 db \com.sotogra.qualit base.db SAME
279 272 uiLdtil \com sotogra.qualit base guiutil SAME
279 273 implementation |com.sctogra.qualt base guidtilimple...| SAME
279 275 preference \com sotogra.qualit base preference [SAME
279 276 projecttree \com sotogra.qualt base projecttree [SAME
279 277 table icom.sotogra,qua!it.base.tahie SAME
279 293 dview \com.sotogra.qualit tools diview SAME
279 295 graph \com .sotogra.qualit tools.graph SAME
279 32 result \com .sotogra.qualtt tools result SAME
279 1314 model icom.sotogra,qua!it.tools subsystem... SAME
279 331 license \com.sotogra tools license SAME

After the cycles have been analyzed, one can proceed to survey the crit-
ical values of other metrics. The procedure is quite similar to that used
for the PckgCyclicRefPckg metrics.

Basically, the following architecture smells can be detected automati-
cally with metrics or specific analysis queries.

Unused artefacts (3.4.1)

Too small artefacts (3.4.3, 3.5.3)

Too big artefacts (3.4.4)

Treelike dependency graphs between classes (3.2.2)
Type queries (3.3.1)

Listlike inheritance hierarchy (3.3.2)
Too deep inheritance hierarchy (3.3.6)
Packages too deep or unbalanced (3.4.5)
Packages not clearly named (3.4.6)

Too many subsystems (3.5.4)

Subsystem API too big (3.5.6)

In contrast to the results yielded by architecture-based and cycle-based
analysis, the values calculated for these metrics will only point at
potential problems, each of which must be examined in detail. Arte-
facts that are recognized as not being in use are not necessarily unused.
For instance, it is possible that objects created via reflection at runtime
and used polymorphically are not recognized as being in use. For many
metrics the main question concerns the upper and lower boundaries: at

Fig. 7-10
Explanation of Cycle
Metrics

Other Smells that Can Be
Detected with Metrics

|218

7 Tool-based Detection and Avoidance of Architecture Smells

which point does a metrics value begin to indicate a problem, e.g. at
which point does a class or a package become too big?

To usefully apply metrics in projects, it is in our experience recom-
mendable to let the team decide which metrics are beneficial for this
specific project and thus should be further pursued in the course of the
project. Then project-specific, commonly accepted upper and lower
boundaries must be defined for the selected metrics. The calculation
of, e.g., too small and too big artefacts does only make sense if the
team manages to agree on upper and lower boundaries. Otherwise, the
determination of such metrics values will lead to futile discussions, or
the metrics will simply be ignored.

7.5 Support for the Preparation of Large Refactorings

As the name already indicates, large refactorings can have a noticeable
effect on large parts of a software system. Therefore, it is all the more
important to understand which code sections will be affected in what
manner before beginning with a refactoring. Especially where restruc-
turings of libraries are concerned, this sort of information can hardly
be obtained with the tools that are available today. Sotograph can
make it much easier to understand software systems in general, as well
as specifically the effects of changes. This is demonstrated here using
an analysis of the internal API of Sotograph’s tool framework. For lack
of space, we will focus exclusively on the inheritance interface. The
call interface can be analyzed analog.

Before the actual analysis of the interface is carried out, we have to
get an idea of how broadly the framework will be used. In our exam-
ple, we are dealing with the subsystem Base.rool. Here, we can let the
Crossreferencer identify all classes that use Base.tool and have them
displayed in a subsystem graph. Likewise, it is possible to generate a
graph that shows which classes inherit from classes in Base.tool. Fig-
ure 7-11 depicts two sections of each of the two graphs. Right away it
will become clear that changes of Base.tool can affect significant parts
of the system. It is remarkable that most subsystems do not merely use
Base.tool, but also inherit from it. However, it is not surprising that
the central tool framework is widely used for the implementation of
software analysis tools.

7.5 Support for the Preparation of Large Refactorings 219 |

Fig. 7-11
Marked Subsystem
Graph 1

| «subsystems
Tools.subaystem
+ Classes
[CalculatelllegalR elerences. &
[DeleteModelaction
[Erumerated Subs)
[Newhd odelAction

LY | e |

| #subsystems
Tools.xrel
Classes
DetailsT ableMenuProvider &
[DetailsT ableMenuProvider:
xrat
[¥rafDetailDialog -
4 »

| #subsystems %
+ Classes \

AddCategoryAction -
[Delete Categoryiction
DelateCueny
DuplcateCiuery

+ Classes \
DbPLSGenerabonEnging & CloseQuaRiDEAion g At
FileLocCounter Ciompaemwnon + Classes
LicanseDescriptionGeneral ™Jrr. sraDBAdion Exlteble.Frsme =
reaelBAdon ¥

LicenseMessagePanslFact = CroatePLSFromByteCodes » .Ib :DIInIEFBr:me m¥ -
] | 4 - ¥ oA - Base.util

% \\“ T ableBrovwser =l

~_ 1
D \\ Wt 2
N \

EEml e\

b A
s | 1~ Classes

podsmntationsction 2™ [OaighoseConverter & sl

Erovser Database CormertToVersiol A o

rowsedidtion ~|DatabaseConverToversior

BrowserGUI x DatabaseConvertToVersiors ' 1 J Project.Tree

J | | L4] | - Sortable.Table Projecthiode
T TableModelFactory = ProgT reebodel

| «subsystems
Tools.architecture
4 Classes

| ArchitectureAction A!
| ArchitecturaGUI
ArchitectureGLIT

| ArchitecturelL ayer -
4 3

| #subsystems
Tools.dbview
+ Classes
DbViewDbManipulator
DbViewGUI
DbViewGUI$12
DbViewGUIS1 S
4

| #subsystems
Tools.metric

+ Classes

Abstracthetric a!
AddAnnotationAction
AddMetricModelaction
[CaloulgieAliMatncsacdion

I 220

7 Tool-based Detection and Avoidance of Architecture Smells

Fig. 7-12
Marked Subsystem
Graph 2

+ Classes
e f

HrefG L
XrefGLI§E
HretGLI$9
|#reddenuManager

«subsystems
Tools.query

4 Classes
Queryaction d
[ueryDeveloper J
|QuenDeveloperGUI
QuenyDeveloperGUIS0 |

| | &

«subsystem:»

Tools. ger|

+ Classes
CreatePL SFromByteCode/ = |

«subsyslem» _ CreatePL SFromSnifiaction=
SotograTools license DB8ToolContainer

D8ToolContaineryt = |
1 3

waubaystems

Tools.browser

~ Classes

Browser Db

ErowserAction] # Classes

BrowsenGUI {T—MigrationStartG Ul

ErowserienuManager = etionGU|

¥
Tools.architecture|

~ Classes I

ArchitectureAction
Architecture GUI
ArchitectureiMenudanager
ArchitectureTool

«subsystem:
Tools.dbview

+ Classes

DbViewGUI -
CbViewGUI$E12
DbViewGUI$12
DbViewGUI$4 -

1| »

«subsystem:
Tools.metric
4 Classes
MetricsAction
MetricScope

MetricScopeGU |
MetricSenvice -

Lot

T rendSelectionGUl

/

«subsyslem»
Base guiutil

ssubsystems
Base.table

+ Classes
GenericldR o

wsubsystems
Base util

«subsysiems
Base.lool

Base projecitres

«subsystems
Flugins

In the next step, we are going to call up a display of the inheritance
hierarchy of the subsystem Base.tool’ classes. In this graph, we will
then highlight the classes which were overwritten outside the sub-
system and insert the overwritten methods, as depicted in Figure 7-13.
The disadvantage of this form of presentation is that no difference
between often and rarely overwritten classes and methods is visible.

7.5 Support for the Preparation of Large Refactorings

221 I

Export ResultArgument

ExternalQueryArgument

|Service 1 Sniff
+ Methods
CommandDispatcher ind
* Melhods o !
[changea ___a| [Too/ DbToo! | [ppTocicomposite
dispatch <}—] " Methods * Methods * Methods
doExecuteCommand aboulToCloseTool |9 [gotDatabase doExecule Command |
gelld - getDbName J DbMame 0
Al L get Tille: ale |) eforeClo:
ini v
|| »

In this way Sotograph also offers the option of identifying all those
classes and methods of a subsystem or package which are typically
overwritten, i.e. those that are overwritten by most of N most impor-
tant clients. Figure 7-14 depicts the resulting Graph, which shows far
more clearly than the previous image what changes should rather be
avoided if one doesn’t wish to provoke severe side-effects. It also
proves clearly that — in spite of generous use of the tool framework —
only few methods are overwritten by a relevant part of the clients, at
least in the section of the graph displayed here.

Fig. 7-13
Marked Inheritance
Hierarchy

I 222

7 Tool-based Detection and Avoidance of Architecture Smells

Fig. 7-14
Marked Hierarchy,

based on Frequency

ExportResultArgument
ExtemalQueryArgument

MetricCommandArgument

lemCommandArgument]-i]—'XreIOueryComandArg.mam |
T

sinterfaces <
CommandArgument
W ‘1‘

\ LoadQuery TreaArgument

QueryCommandArgument

|XraIF{esdﬂtemComma ndArgument I

ShowResultArgument

StangCommandArgument

Sniff

Sarvice

o T
P

Mathad I DbTool
<+ Methods
update

doExecuteCommand I * Methods
| init |
| update /

getld

update

wrapUpBeforeClosing
Based on such graphs, a rough assessment of the effects of a refactor-
ing on a part of the tool framework can be made. Prior to the actual
refactoring, one should proceed further to get an in-depth impression
of the analysis done with Sotograph and examine various aspects in
greater detail.

Tool

DbToolCompasite

L] |

7.6 Support of the Refactoring Process

A fundamental problem of large refactorings is that often clients of the
restructured code are also affected by changes. This will have quite an
impact on much-used libraries, whose users are no longer in touch
with the developers, and for which the developers are unable to
directly adapt the customer code in the course of their refactoring. In
this case, it is pivotal that the users learn what has changed in between
the different versions of the respective library.

Sotograph possesses a variety of query options which help devel-
opers to find out which artefacts were generated, deleted or modified
between two versions. The overview for Base.tool will result in the fol-
lowing figures on the class and method levels for differences between
versions 0.90 and 0.96:

New classes 3
Deleted classes 0
Modified classes 49

New methods 21

7.7 Conclusion

223 I

New public methods + public methods with changed signature | 11
Deleted methods 0
Modified methods 88
Modified public methods without changed signatures (new + 69
modified)

The data on which these figures are based can then be visualized. Fig-
ure 7-15 pictures all new public methods and all public methods with
changed signatures in the inheritance hierarchy’s context. All modified

classes are marked.

IDala e

[araprieganadialogimel |
[weom |

Graphiegenaluiogmpl

[a0Lacher

AL —
T e]
eirenrancae,
Lenecasorranae

LN eechsatCormectontiang
Al [

7.7 Conclusion

This chapter shows that a tool such as Sotograph allows continuous
monitoring of a software system’s architectural quality during devel-
opment without much effort. Thus it is feasible to cure many architec-

Fig. 7-15
Changed Classes,
Marked

224

7 Tool-based Detection and Avoidance of Architecture Smells

ture smells before they become so firmly rooted in the system that they
can only be eradicated with very sophisticated refactorings.

For several years now, the Sotograph has been in use for profes-
sional analyses of large software systems. Apart from a few excep-
tions, a high number of architecture violations and cycles were found
in the examined systems. These analyses clearly proved that architec-
tural decay in most cases begins with the first code lines and not later
on, in the maintenance phase. This held also true for the implementa-
tion of Sotograph itself, as this chapter showed.

Furthermore, it is an interesting experience that architecture anal-
yses and large refactorings contribute to enabling economic mainte-
nance of such projects which have been declared not maintainable,
and this with only a few man months of work. Of course, these expe-
riences are only transferable to projects that concern software systems
of a decent technical quality.

In this chapter, the Sotograph was used as a vehicle for illustrating
the technological possibilities of architecture analysis as well as for
those of supporting the preparation and execution of large refactor-
ings. Further information about Sotograph can be found at: www.soft-
ware-tomography.com.

223 I

8 Conclusion

Object-oriented programming has been around for a couple of
decades. In its early days, it was quite difficult for this approach to
become established. Lack of tool support as well as performance con-
cerns often led to the continued use of ‘classic’ programming lan-
guages such as Cobol or C, in spite of the propagated superiority of
object-oriented concepts.

Over the years, object-orientation succeeded in entering the world
of commercial software development; venturing there from small, not
business-critical systems. Today, object-oriented programming lan-
guages offer — besides exclusively object-oriented concepts — every-
thing that makes them perfect for application in extremely comprehen-
sive projects:

A standardized programming language

Platform independence

Performance

Support from popular manufacturers

Libraries and frameworks for all significant technologies, such
as databases, network communication etc.

Powerful tools plus highly integrated development environ-
ments

Products for application with high transaction rates, transac-
tion monitors and application servers

Developers with the necessary know-how

Moreover, a substantial part of the available tools and libraries is open
source software. Now, we can finally roll up our sleeves and get to
work on switching the no longer maintainable systems from the good
old days of Cobol and C to the seemingly superior object-oriented
technologies.

Object Orientation for
Large Projects

224

8 Conclusion

Object-oriented
Legacy Systems

Recognizing & Solving
Architecture Problems

Architecture Smells

Refactoring Plans

But wait a second here! The already existing object-oriented sys-
tems should serve as a warning: a considerable number of these object-
oriented systems falls in the category of legacy software, which is diffi-
cult to service. These systems quite clearly prove that not much will be
gained with object-oriented programming languages and technologies
alone. The newly won flexibility will not automatically result in easy-
maintenance systems. If this flexibility is wrongly applied, it can even
make system maintenance harder than it would have been using clas-
sic, non-object-oriented technologies.

We hope that this book will contribute to making object-oriented
systems easier to service. We don’t pursue the goal of delivering a per-
fect system design at an as early stage as possible — we think this
approach is illusional anyway, particularly for large systems. Instead,
we hope that the contents of this book will help to point at ways for
recognizing and solving architecture problems in systems with the aid
of various refactoring techniques.

Architecture smells indicate where architectural issues might be
present. Especially the ‘lumping’ problem drastically reduces the main-
tainability of large systems. While we are still smiling mildly at pro-
grams written in Basic, which — thanks to the goto statement — happily
& frequently turn into spaghetti code, similarly critical spaghetti struc-
tures are not rarely present in more complex systems these days. This
phenomenon will not occur on a single method’s or statement’s level,
but on higher ones, such as classes, packages and subsystems. Here,
clearly defined structures are often lost. Since recently though, ade-
quate tools — like, for example, Sotograph — are available that can
identify these smells in a system.

Whereas finding potential architecture smells with the aid of avail-
able tools is mostly a rather menial task, evaluating smells requires a
lot of architecture experience. Whether there really is a problem or not
strongly depends on the system context.

Minor structural weaknesses can be eliminated in the course of
our everyday development work. We use small refactorings, preferably
aided by a suitable IDE, to keep the structure clean and easily change-
able. However, should architectural problems that call for more com-
prehensive code restructurings arise, creativity is needed more than
anything else. In such situations, we must look for ways to solve the
architecture problem on one hand and modifying the system in small
steps on the other. We can create refactoring plans that will guide us in
solving the problem. These plans must constantly be adapted to reflect
the refactoring’s progress. During a large refactoring, we will always
learn something new that will lead us to further adapting our plan.

8 Conclusion

225

Large refactorings are rarely limited exclusively to the program
code. Most commercial systems work with (relational) databases.
Therefore, data structures too must often be modified as well in the
course of a refactoring. Problems will arise because relational data-
bases hardly offer any options for concealment: the effects of changes
to the data model can hardly be restricted to merely one partition. In
addition, not only must the data structures of an already running sys-
tem be altered, but the existing persistent data must migrate to the new
data schema.

In the respective chapter of this book, we came a step closer to our
goal of improving database structures in the course of an evolutionary
development process. We also gained and discussed some expert
knowledge that shows how evolutionary changes to an object-oriented
system can affect the database connection, and how this task too can
be solved using an evolutionary approach.

Subsystems are important instruments for structuring large sys-
tems: they hide their internal realization behind a published interface
(published API). Other subsystems access this subsystem exclusively
over the API. When architecture problems exist on the subsystem level
or even in layers, the subsystems’ interfaces usually must be adapted as
well.

This poses special challenges for refactoring. After all, the sub-
systems have entered into contracts with each other via the interfaces
that govern their collaboration. These contracts cannot be changed by
one side alone: The client subsystems must migrate to the altered inter-
face. With a few simple tricks and tools, the developers of the sub-
system to be changed can make life (that is: migration) much easier for
the developers of the using subsystems. The techniques discussed here
can also be applied for restructuring frameworks, for example, with-
out provoking a high migration demand for the applications.

Agile methods negate the validity of large architecture designs (Big
Upfront Design). Consequently, this also implies some criticism of
those who create such big architecture designs: the software architects.
We do not believe that agile methods do away with the need for soft-
ware architects. Of course, systems developed with agile methods do
have a software architecture too, and of course this architecture must
meet present requirements. In an agile project, the architecture can
develop in the course of the project period, but in a more complex
project somebody must monitor this development and alert others to
emerging problems, i.e. architecture smells. Problems on the architec-
ture level can not be efficiently found by simply reading the code.
Here, we clearly see the task of software architects in agile projects:
they should not merely define the architecture, but first and foremost

Database Refactorings

API Refactorings

The Architect’s Role

226 8 Conclusion

provide their architectural experience as a service to other team mem-
bers.

Outlook The discussion about large refactorings certainly won’t end with
this book. The concepts and procedures presented here are derived
from our project experiences. Their application in further projects will
create new incentives for the future discussion in the field of large
refactorings.

9 Glossary

Acceptance Tests

Tests assuming the user’s perspective that describe the sys-
tem’s acceptance criteria. Ideally, an as large number of these
tests as possible shall be automatically executable. Of course
there are limitations to this approach, particularly where the
system’s ergonomics is concerned. See Chapter 4.

Architecture Smell

An architecture smell is a smell that indicates a problem in
the software architecture. Whether such a problem does exist
or not must be verified through detailed testing. See also
Code Smell. See Chapter 3.

Automated Refactoring

Automated refactorings are refactorings which are supported
by an IDE and therefore can be executed automatically. The
IDE guarantees that the system’s behavior will remain
unchanged. In consequence, automated refactorings are also
always safe refactorings. Moreover, automated refactorings
can be carried out in a very short time, regardless of the sys-
tem’s size.

Basic Refactoring

Code Smell

Refactorings that are primarily based on elementary, object-
oriented constructs. Most refactorings introduced in [Fowler
99] are basic refactorings.

A code smell is a smell that indicates a problem in the code.
Whether such a problem does exist or not must be verified

I 228

9 Glossary

with detailed testing. See also Architecture Smell. See Chap-
ter 3.

Detailed Refactoring Plan

The detailed refactoring plan specifies details of a refactor-
ing plan. It breaks down single refactoring steps into basic
refactorings wherever this is feasible and analyzes the
remaining modifications in detail. See Chapter 4.

Function Test

In the context of this book, the term function test is used syn-
onymously with acceptance test.

Large Refactoring

Refactorings are considered large refactorings if the follow-
ing criteria are met: they last longer than a day; they alter sig-
nificant parts of the system; and they become visible to all
developers involved in the project even while the refactoring
is being executed. See Chapter 4.

Manual Refactoring

Manual refactorings are not supported by the IDE, which
means that developers have to conduct them manually. They
are the opposite of automated refactorings.

Merciless Refactoring

Merge

Merge Tool

Merciless refactoring reflects a particular attitude and prac-
tice in software development: developers will not wait with
refactorings until a system structure has degenerated. Instead,
even minor flaws will be eradicated at once. See Chapter 2.

Merging is the incorporation of parallel changes to one and
the same class. One can only partly automate this process
with Merge tools. See Chapter 4.

Merge tools support the merging of two simultaneously
altered versions of a class. They serve to point out differences
between both classes and thus enable developers to either
manually incorporate changes to one class in the other one or
to let the merge tool automatically integrate these changes.

9 Glossary

229 I

However, automatic merging is not safe. It is possible that
merging results in a non-compilable class. See Chapter 4.

Public Interface

The public interface of a class. The public interface includes
all public methods and attributes. We must distinguish
between public and published API. See Chapter 3.

Published API

Refactoring

The published interface of a component, which allows us to
use the components’ services. See Chapters 3 and 6.

Refactoring means changing the internal structure of a soft-
ware in such a manner as to make it easier understandable and
changeable without affecting its visible behavior at runtime.
See Chapter 2.

Refactoring Plan

A refactoring plan sketchily lists the single steps required in
the course of a large refactoring. The plan is discussed by all
members of a team. It should fit onto a flip chart and be
posted publicly, i.e. clearly visible to all those involved in the
project. The large refactoring’s progress will be visualized on
the refactoring plan (by checking off the single steps). The
refactoring plan is further specified by the detailed refactor-
ing plan. See Chapter 4.

Safe Refactoring

Save Point

Smell

Safe refactorings are refactorings that can be executed with-
out risking changes to the system’s behavior or creating
errors. If, for example, a tried step-by-step instruction for a
refactoring is available (such as the Mechanics in [Fowler
99]), the refactoring can be carried out with no risk of creat-
ing new errors.

A save point is one stage of a large refactoring at which the
system structure is definitely better than prior to refactoring
or, respectively, better than before the previous save point.
See Chapter 4.

| 230 9 Glossary

A smell hints at a potential problem in the system. See Chap-
ter 3.

Unit Test

A unit test tests the components on which a system is based.
In non-object-oriented imperative programming, single pro-
cedures and functions are tested. In object-oriented systems,
classes and sets of classes are tested.

There are open source tools available that allow developing
and running unit tests for almost every programming lan-
guage. See Chapter 2.

Unsafe Refactoring

Refactorings for which no tried step-by-step instructions are
available that would allow their safe, incremental execution.
One example of an unsafe refactoring is the renaming of a
class.

	Refactorings in Large Software Projects
	How to Successfully Execute Complex Restructurings
	Martin Lippert: lippert@acm.org
	Stefan Roock: stefan@stefanroock.de
	Date: 11/01/2004

