
AJEER: An AspectJ-Enabled Eclipse Runtime

Martin Lippert
Software Engineering Group

University of Hamburg & it-wps GmbH, Germany
lippert@acm.org

ABSTRACT
There are a number of technologies designed to improve
modularity in software systems. The technique presented here
combines two of them seamlessly to exploit their respective
benefits: Eclipse plugins and AspectJ. The Eclipse runtime is
based on the idea of plugins, enabling large systems to be built
from smaller components. AspectJ is an AOP-enhanced version of
the Java language that allows developers to modularize
crosscutting concerns into aspects. While both technologies offer
a number of interesting features, their seamless combination is not
trivial. Several limitations make it impossible to exploit all the
features of the combined technologies. AspectJ-Enabled Eclipse
Runtime (AJEER) is designed to overcome these limitations. It
integrates load-time weaving for AspectJ into the Eclipse runtime,
thus allowing developers to implement aspects that modularize
crosscutting concerns beyond the capability of individual plugins.
In addition, the dynamic features of the OSGi-based Eclipse 3.0
runtime are preserved in this setting – making it possible to plug
AspectJ aspects into and out of the running system dynamically.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques – Aspect-Oriented
Programming. D.3.2 [Programming Languages]: Language
Classifications – AspectJ. D.3.3 [Programming Languages]:
Language Constructs and Features – modules and packages,
classes, aspects

General Terms
Design, Languages

Keywords
Eclipse, Eclipse Rich Client Platform, Plugin Runtime, Aspect-
Oriented Programming, AspectJ, Cross-Plugin Pointcuts,
Modularization

1. INTRODUCTION
The main goal of the AspectJ-Enabled Eclipse Runtime (AJEER)
is to allow developers to use two proven techniques in
combination: Eclipse plugins [5] and AspectJ [3] [8]. The idea is
to enable large software systems to be built based on the Eclipse
Rich Client Platform [5], using AspectJ at the same time to
modularize crosscutting concerns across different plugins.

The underlying idea and a preview version of AJEER were
presented at OOPSLA 2003 (see [9], [10]). The new OSGi-based
runtime of Eclipse 3.0 offers additional advanced features for
implementing a combined runtime. These include the option of
dynamically adding and removing plugins at runtime, which is of
special interest for AJEER because adding and removing aspect-
promoting plugins at runtime is not a trivial task.

2. LOAD-TIME WEAVING FOR ASPECTS
INSIDE AJEER
AJEER allows developers to write separately compiled aspect-
promoting plugins to the complete system. Using AJEER,
developers do not need to recompile all system plugins if a new
aspect appears. They can simply add their aspect-promoting
plugin to the set of installed plugins.
This is possible because AJEER adds load-time weaving to the
runtime of Eclipse. By doing so, AJEER takes account of the fact
that all aspects may be woven into all classes of the running
system when classes are loaded.
It is realized by adding the weaving part of the AspectJ 1.2
compiler implementation to the Eclipse runtime. Fortunately, this
weaving functionality uses bytecode instead of source code to
weave aspects into regular Java classes, which makes it easy to
use this functionality at the class-loading level. This is also
demonstrated by the preliminary load-time weaving class loader
that is now part of AspectJ 1.2 (and is derived from this work).

3. DYNAMIC PLUGINS
The new runtime of Eclipse 3.0 is based on the OSGi
specification and runs on an OSGi kernel implementation. This
allows plugins to be added and removed from the system at
runtime. This feature is already used for the Eclipse SDK, where
it is possible to add (and partially remove) plugins at runtime
without restarting the Eclipse IDE.

3.1 Challenges for AJEER
The dynamic features of the OSGi kernel open up quite new
possibilities for AJEER. Users would expect to add and remove
all kinds of plugins at runtime – even aspect-promoting plugins.
This is not a trivial challenge for AJEER since its basic
implementation uses load-time bytecode instrumentation to weave
aspects into the system (see [9]). Adding an aspect dynamically to
the running system (without any further action) would cause
subsequently loaded classes to be woven with the new aspect.
Previously loaded classes would not be affected by the aspect.
Removing an aspect from the system would have similar effects:
because the aspect is woven into some already woven classes, this
woven code would remain unchanged in the system. This would

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

result in quite complicated and unpredictable behavior – not what
would be expected if aspects were added or removed
dynamically.
To overcome these problems, the next generation of AJEER gives
special attention to dynamically added and removed aspects.
Removing an aspect-promoting plugin at runtime means
unweaving the aspect from the system. Adding an aspect-
promoting plugin at runtime means weaving this aspect into the
system even if affected classes are already loaded.

3.2 Runtime-Like Weaving for AJEER
One way to realize adding and removing aspect-promoting
plugins from a running system would be to implement real
runtime weaving, as in the AspectWerkz system (see [4]). This is
not a trivial task because the AspectJ language offers features that
make runtime weaving for the complete language quite difficult
(like inter-type declarations). Not even the class hot-swapping
features of the new JVMTI interface (provided by JDK 1.5) are
capable of handling these changes to class definitions.
To avoid AJEER supporting only a subset of the AspectJ
language, we allow aspect-promoting plugins to be added and
removed from the running system in a slightly different way.
Instead of swapping class definitions at the VM level, AJEER
utilizes the dynamic features of the Eclipse runtime’s OSGi layer.

3.2.1 Removing Aspect Plugins at Runtime
Weaving an aspect at load time results in a dynamic dependency
between the plugin that promotes the aspect and the plugin that
contributes the load-time woven class. Removing the plugin that
promotes the woven aspect at runtime causes the OSGi layer to
stop the dependent plugins, too – and thus all plugins that have
loaded a class into which the aspect has been woven.
AJEER is now able to restart these plugins, which causes the
original versions of those plugins to be reloaded. And since the
aspect is plugged out of the system, the plugin is reloaded without
the aspect being woven into the classes of that plugin. All
remaining aspects are woven again into the classes of that plugin
via the normal load-time weaving mechanism of AJEER.

3.2.2 Adding Aspect Plugins at Runtime
Adding an aspect is slightly more complicated. AJEER must
determine which classes that are already loaded into the system
would be affected by the new aspect. This is done by keeping
track of loaded classes. AJEER is able to analyze these classes to
determine whether a class would be affected by the aspect1. If
such classes are found, the corresponding plugins are reloaded via
the OSGi mechanism.

4. WHAT THE AUDIENCE WILL SEE
Those attending the demo will see the latest running version of
AJEER, which is currently built on the OSGi-based runtime of
Eclipse 3.0. They will see several demo applications, including

• a reimplemented version of Chris Laffra's Eclipse Monitor
(showed last year at OOPSLA in the static bytecode
modification version),

1 In the first naive implementation, by using a combination of the

fastmatch functionality (see [6]) and repassing the original
bytecode of the class to the weaver to detect possible effects.

• an IBM research project that draws heavily on the AspectJ-
enabled runtime,

• and a demo from the Parallax project (see [11]) which relies
on aspect-promoting Eclipse plug-ins to address middleware-
specific crosscutting concerns at different MDA-levels of
abstraction throughout the development life cycle of
distributed middleware-mediated applications.

There will also be an opportunity to take a look under the hood of
the implementation.

5. SUMMARY AND OUTLOOK
We have discussed the integration of load-time aspect-weaving
functionality into the new OSGi-based runtime of Eclipse 3.0
including its dynamic features. The enhanced runtime is fully
compatible with the original implementation. This allows
applications to be built on top of the Eclipse Rich Client Platform
while using AspectJ at the same time.
Achieving good runtime performance and low overhead in
memory consumption are still challenges for AJEER. Here there
is room for future improvement. AJEER is open-source and can
be downloaded at [1].

6. ACKNOWLEDGMENTS
I wish to thank the AspectJ team for their help in implementing
the weaving class loader and improving weaving performance and
all early adopters for their feedback and patience, especially Raul
Silaghi, Sabine Hauert, Steven Rohall and Chris Laffra.

7. REFERENCES
[1] AJEER homepage: http://www.martinlippert.com/.

[2] AOSD Web Site. http://www.aosd.net/.

[3] AspectJ Team. AspectJ homepage.
http://www.eclipse.org/aspectj/.

[4] AspectWerkz. http://aspectwerkz.codehaus.org/

[5] Eclipse Project. http://www.eclipse.org/eclipse/.

[6] E. Hilsdale, J. Hugunin. Advice Weaving in AspectJ. In
Proceedings of AOSD ’04. ACM press. 2004.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. Longtier, J. Irwan. Aspect-Oriented Programming.
In Proceedings of ECOOP’97, Springer-Verlag LNCS 1241,
June 1997.

[8] G. Kiczales, E.Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An Overview of AspectJ. In J. Knudsen,
editor, European Conference on Object-Oriented
Programming, Budapest, 2001. Springer-Verlag.

[9] C. Laffra, M. Lippert. Visualizing and AspectJ-enabling
Eclipse Plugins using Bytecode Instrumentation. In OOPSLA
’03 Companion, ACM press, 2003.

[10] M. Lippert. An AspectJ-enabled Eclipse Core Runtime
Platform. In OOPSLA ’03 Companion, ACM press, 2003.

[11] Software Engineering Laboratory at the Swiss Federal
Institute of Technology in Lausanne: The Parallax Project.
http://parallax-lgl.epfl.ch/, August 2004.

