
An AspectJ-Enabled Eclipse Core Runtime Platform 
Martin Lippert 

Software Engineering Group 
Faculty of Computer Science 

University of Hamburg 
Vogt-Kölln-Straße 30 

22527 Hamburg, Germany 
++4940 42883 2306 

lippert@acm.org 
 
 

ABSTRACT 
Separation of concerns and modularity are key elements of 
software engineering. The work described here presents a 
combination of two proven techniques that help improve both of 
these elements: the Eclipse Core Runtime Platform, which 
introduces plugins to Java programming as a kind of module 
concept on top of packages, and aspect-oriented programming 
using AspectJ, which aims to improve the modularity of 
crosscutting concerns. The work presents a combination of these 
two technologies in an AspectJ-enabled version of the Eclipse 
Core Runtime Platform. Unlike the standard implementation of 
the Eclipse Core Runtime Platform, the AspectJ-enabled 
implementation allows aspects to modularize crosscutting 
concerns beyond the boundaries of plugins (without the need for 
recompilation across plugins). It allows crosscutting concerns to 
be modularized by means of aspects and plugins while using the 
enhanced but compatible version of the Eclipse Core Runtime 
Platform as promoted by the Eclipse project. 

Categories and Subject Descriptors 
D.1 [Software]: Programming Techniques – Aspect-Oriented 
Programming. D.3.2 [Programming Languages]: Language 
Classifications – AspectJ. D.3.3 [Programming Languages]: 
Language Constructs and Features – modules and packages, 
classes, aspects 

General Terms 
Design, Languages 

Keywords 
Eclipse, plugin runtime infrastructure, aspect-oriented 
programming, AspectJ, cross-plugin pointcuts, modularization 

1. INTRODUCTION 
Many approaches to software engineering aim to improve 
separation of concerns and modularity [6], [7]. This work focuses 
on two promising approaches that are implemented for Java: the 
Eclipse Core Runtime Platform, which provides a plugin 
mechanism for Java [3], and aspect-oriented programming via 

AspectJ, which is designed to modularize crosscutting concerns 
[2], [4], [5], [1]. While these two approaches seem to be 
orthogonal to each other, their combination would appear to be 
powerful. 
But what happens if we try to combine these two approaches? 
What if we want to develop large applications on top of the 
Eclipse Core Runtime Platform using the Java dialect AspectJ? 
What, for example, if we want to develop the Eclipse system itself 
using the aspect-oriented programming features of AspectJ? 
Typically applications developed using AspectJ have to be 
completely compiled or woven via the AspectJ compiler. The 
AspectJ compiler takes the parts of the system (libraries, sources 
and classes) and produces a complete woven system. This basic 
assumption breaks with the modularization approach used via 
plugins. When we develop plugins, the compiler typically knows 
all the source code of the plugin itself and the bytecode of the 
required plugins – and no more than that. As a result, aspects 
could only define pointcuts that are completely inside a single 
plugin (they can define more, but the weaving functionality of the 
aspect compiler will find only those targets of the pointcut that 
are inside the plugin where the aspect is defined). 
This is not enough. We would like to be able to define pointcuts 
that are beyond the boundaries of plugins. This would allow us to 
use Eclipse as a rich-client platform together with AspectJ. The 
goal is to allow developers to design aspects for pointcuts that 
may crosscut plugin boundaries (like object boundaries) and let 
them modularize and implement those aspects into their own 
plugins. 

2. AN ASPECT-ENABLED ECLIPSE CORE 
RUNTIME PLATFORM 
An AspectJ-enabled Eclipse Core Runtime that integrates load-
time weaving can solve the problem. The basic idea of load-time 
weaving of aspects is to let the aspect be woven into classes at the 
time the classes are loaded into the VM (in the case of Java). This 
is typically done via customized class loaders. These load the 
bytecode of the class to be loaded out of the .class file and weave 
the aspect hooks and calls into this bytecode. The woven 
bytecode is subsequently given to the VM for actual definition of 
the class. 
Although load-time weaving functionality was not available for 
the AspectJ 1.0 language, the bytecode weaving implementation 
of AspectJ 1.1 allows load-time weaving to be realized for the 
complete AspectJ 1.1 language. A weaving class loader could be 

 
Copyright is held by the author/owner(s). 
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA. 
ACM 1-58113-751-6/03/0010. 
 



implemented by simply using the second part of the AspectJ 
compiler implementation, where the weaving is done at bytecode 
level. 

2.1 A Weaving Runtime 
In contrast to the common way of enhancing the Eclipse system 
via additional plugins, the runtime architecture of Eclipse cannot, 
unfortunately, be AspectJ-enabled by an additional plugin. The 
reason for this is that the load-time weaving has to be injected at 
class-loading time, which is not designed to be modified or 
enhanced via plugins in the Eclipse system. Thus the idea of an 
AspectJ-enabled Eclipse Core Runtime is based on modified 
versions of the basic core plugins of Eclipse instead of additional 
plugins. 

2.1.1 Load-Time Bytecode Modification For Eclipse 
One way to introduce the weaving functionality into the Eclipse 
system is to insert a basic load-time bytecode modification hook 
at the classloading mechanism of Eclipse. This hook allows us to 
inject the weaving functionality exactly where the bytecode of a 
class is loaded without greatly modifying the class loaders of 
Eclipse. 

2.1.2 Inserting AspectJ Bytecode Weaving 
The load-time bytecode modification hook provided by the 
modified runtime can be used by a plugin to insert the bytecode 
weaving functionality of AspectJ 1.1. This plugin just weaves 
class per class as they are loaded into the system. Therefore the 
plugin needs to know all aspects plugged into the system at each 
startup. How could this be achieved? 

2.1.3 The Aspect Extension Point 
A neat way of promoting aspects at startup time is to use the 
general Eclipse mechanism of Extension and Extension Point for 
this purpose. While the mechanism is used by the Eclipse system 
to let plugins add parts (extensions) to the system at predefined 
points (extension points), it is already used by the core runtime to 
determine which applications are available (via the extension 
point org.eclipse.core.runtime.applications). 
We can introduce a new extension point called “aspects” that lets 
other plugins define, in their plugin.xml description, the aspects 
they want to promote for weaving. 

2.2 Summary 
We have discussed the basic integration of a load-time aspect 
weaving functionality into the Eclipse Core Runtime Platform. 
We presented an approach enabling the basic weaving 

functionality of AspectJ 1.1 to be used to implement this. All of 
this is implemented and working for the current version of Eclipse 
(2.1) and AspectJ (1.1). The modified runtime is fully compatible 
with the original implementation in a way that the complete 
Eclipse platform including the Java IDE is working on top of it 
without any adaptations. 
So far, the static view of the system is complete. Aspects were 
woven into classes that are loaded by the Eclipse system. Apart 
from the static view of the system, the runtime behavior of the 
Eclipse plugin infrastructure plays an important role when aspects 
are defined inside plugins and should be woven into classes of 
other plugins. The AspectJ load-time weaving plugin can take 
care of these issues and ensure that the dynamic dependencies 
between load-time woven plugin code inside different plugins is 
mapped onto the general plugin dependency mechanisms of 
Eclipse. 

3. ACKNOWLEDGMENTS 
I wish to thank Jim Hugunin and Wes Isberg of the AspectJ 
project for their help in implementing the weaving class loader 
and improving weaving performance. My special thanks go to 
Axel Schmolitzky for his comments on earlier drafts of this work. 

4. REFERENCES 
[1] AOSD Web Site. http://www.aosd.net/. 

[2] AspectJ Team. AspectJ home page. 
http://www.eclipse.org/aspectj/. 

[3] Eclipse Project. http://www.eclipse.org/eclipse/. 

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. 
Lopes, J. Longtier, J. Irwan. Aspect-Oriented Programming. 
In Proceedings of ECOOP’97, Springer-Verlag LNCS 1241, 
June 1997. 

[5] G. Kiczales, E.Hilsdale, J. Hugunin, M. Kersten, J. Palm, 
and W. Griswold. An Overview of AspectJ. In J. Knudsen, 
editor, European Conference on Object-Oriented 
Programming, Budapest, 2001. Springer-Verlag. 

[6] D. L. Parnas. Information Distribution Aspects of Design 
Methodology. IFIP Congress Preprints. 1971. 

[7] D. L. Parnas. On the criteria to be used in decomposing 
systems into modules. In Communications of the ACM, 
volume 15, pages 1053-1058, 1972.

 


