
Visualizing and AspectJ-enabling Eclipse Plugins using
Bytecode Instrumentation

Chris Laffra
IBM Ottawa Labs
Ottawa, Canada

Chris_Laffra@ca.ibm.com

Martin Lippert
Software Engineering Group

 University of Hamburg, Germany
lippert@acm.org

ABSTRACT
Bytecode instrumentation can be used effectively to (a) generate
visualizations and (b) to modify the behavior of Eclipse plugins.
In this demonstration, we will show two independent techniques
that have in common that they obtain their results by modifying
the binary representation of a given software system. In the first
part of the demo, Chris Laffra will show experiments he
performed on visualization of Eclipse plugins in the context of the
JikesBT project. In the second part of the demo, Martin Lippert
will show how to weave aspects into Eclipse plugins without
having access to their source.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques – Aspect-Oriented
Programming. D.3.2 [Programming Languages]: Language
Classifications – AspectJ. D.3.3 [Programming Languages]:
Language Constructs and Features – modules and packages,
classes, aspects

General Terms
Design, Languages, Frameworks, Visualization

Keywords
Eclipse, Plugins, Reflection, Introspection, Visualization, Aspect-
Oriented Programming, AspectJ, Cross-Plugin Pointcuts,
Modularization

1. ECLIPSE PLUGIN VISUALIZATION
To use a system well, one has to understand its inner workings.
Most users and contributors of Eclipse [2] view it as a black box.
They write their own plugins, connect to a limited set of other
plugins, and hope everything works. Novice Eclipse developers
often get stuck at questions such as “why does my plugin not
load?” The answer to that question lies in the following:

Lloyd's Hypothesis: Everything that's worth understanding
about a complex system can be understood in terms of how it
processes information. -- Seth Lloyd

Eclipse essentially is a highly componentized Java program. It
consists of loosely coupled plugins that collaborate to perform
tasks. The plugins extend others by implementing their interfaces.
External inputs result in complex chains of events, sometimes in
parallel, each racing from the depths of the Eclipse core runtime

towards plugins at the border of this living eco-system. Eclipse
offers limited mechanisms to understand the event propagations
that are so essential in understanding Eclipse better. To obtain a
higher insight, we need to add a better reflective layer that can
report on a wide variety of information sources, such as plugin
activation, class loading, method invocation, and object creation.
To provide that extra layer of introspection, two options are
available:

1. Run Eclipse on a Java virtual machine in a special
debug mode and use standard Java profiling API
(JVMPI). The client reacting to the events sits in a
separate process and information is transferred using
sockets. There is minimal overhead to start the system,
but the amount of communication that can be
exchanged is heavily restricted, often leading to
mandatory filtering at the source VM.

2. Use bytecode instrumentation to modify the class files
that define the Eclipse plugins. At critical locations,
insert special code that will generate extra “events”
when executed. The client code reacting to the events
runs in the same process and communication between
Eclipse and the client is done as efficiently as possible
using normal method calls. The client code can bypass
restrictions of JVMPI by creating highly customized
visualizations. The events can be easily augmented by
extra information obtained by using Eclipse API itself.

Bytecode instrumentation has been used to generate various
visualizations that show internal Eclipse communications.
One focuses on plugins and the
method calls made between
them at a very high level (see
at right). Another one records
all object allocations and uses a
weak hashtable to discover
Eclipse memory leaks. Yet
another allows for diving really
deep into the bowels of Eclipse
showing every single method executed (including parameter and
return values). Finally, we experimented with making the
visualization client an Eclipse plugin. This is “cool” and elegant
in itself but also serves a useful purpose. The extension points
offered by the plugin allow third parties to enhance the default
visualizations with custom ones. Two examples are included in
the plugin to do performance profiling and attach sounds to
certain events. The source code for the visualization can be
downloaded together with the JikesBT project [3].

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

2. ASPECTJ-ENABLED ECLIPSE CORE
RUNTIME

Many approaches to software engineering aim to improve
separation of concerns and modularity [6]. The idea of an
AspectJ-enabled Eclipse Core Runtime focuses on two promising
approaches that are implemented for Java: the Eclipse Core
Runtime Platform [2], and aspect-oriented programming via
AspectJ [1], [4]. While these two approaches seem to be
orthogonal to each other, their combination appear to be powerful.
The combination of these two technologies for Java is not trivial.
Typically applications developed using AspectJ have to be
completely compiled or woven via the AspectJ compiler. This
way the compiler works breaks with the modularization approach
used via plugins. When we develop plugins, the compiler
typically knows all the source code of the plugin itself and the
bytecode of the required plugins – and no more than that. As a
result, aspects could only define pointcuts that are completely
inside a single plugin (they can define more, but the weaving
functionality of the aspect compiler will find only those targets of
the pointcut that are inside the plugin where the aspect is defined).
This is not enough. We would like to be able to define pointcuts
that are beyond the boundaries of plugins. This would allow us to
use Eclipse as a general application (“rich-client”) platform
together with AspectJ. Just think of any large AspectJ-based
application being developed as a set of plugins. The goal is to not
let the plugin technology limit the capabilities AspectJ provides.
Developers should be enabled to design aspects for pointcuts that
may crosscut plugin boundaries (like object boundaries) and let
them modularize and implement those aspects into their own
plugins.

2.1 A Load-Time Weaving Eclipse Runtime
An AspectJ-enabled Eclipse Core Runtime that integrates load-
time weaving can solve the problem. The basic idea of load-time
weaving of aspects is to let the aspect be woven into classes at the
time the classes are loaded into the VM (in the case of Java). This
can be realized via customized class loaders. Such a class loader
loads the bytecode of each class and weaves the aspect hooks and
calls into this bytecode. The woven bytecode is subsequently
given to the VM for actual definition of the class.

2.1.1 Load-Time Bytecode Modification For Eclipse
One way to introduce the load-time weaving functionality into the
Eclipse system is to insert a basic load-time bytecode
modification hook at the class loading mechanism of Eclipse. This
hook allows us to inject the weaving functionality exactly where
the bytecode of a class is loaded without greatly modifying the
class loaders of Eclipse.

2.1.2 Inserting AspectJ Bytecode Weaving
The load-time bytecode modification hook provided by the
modified runtime is used by a weaving plugin to insert the
bytecode weaving functionality of AspectJ 1.1. This plugin just

weaves class per class as they are loaded into the system.
Therefore the plugin needs to know all aspects plugged into the
system at each startup.
A neat way of promoting aspects at startup time is to use the
general Eclipse mechanism of Extension and Extension Point for
this purpose. We can introduce a new extension point called
“aspects” that lets other plugins define, in their plugin.xml
description, the aspects they want to promote for weaving.

2.1.3 Dynamic Dependencies
Apart from the static view of the system, the runtime behavior of
the Eclipse plugin infrastructure plays an important role when
aspects are defined inside plugins and should be woven into
classes of other plugins. The AspectJ load-time weaving plugin
can take care of these issues and ensure that the dynamic
dependencies between load-time woven plugin code inside
different plugins is mapped onto the general plugin dependency
mechanisms of Eclipse.

2.2 Status of Work
All of this is implemented and working for the current version of
Eclipse (2.1) and AspectJ (1.1). The modified runtime is fully
compatible with the original implementation in a way that the
complete Eclipse platform including the Java IDE is working on
top of it without any adaptations. For more information on that
take a look at [5].

3. ACKNOWLEDGMENTS
Martin wish to thank Jim Hugunin and Wes Isberg for their help
in implementing the weaving class loader. Special thanks from
Martin go to Axel Schmolitzky for his comments on earlier drafts
of the work.

4. REFERENCES
[1] AspectJ Team. AspectJ home page.

http://www.eclipse.org/aspectj/.

[2] Eclipse Project. http://www.eclipse.org/eclipse/.
[3] The Eclipse Monitor sample shipped with JikesBT Project.

http://www.alphaworks.ibm.com/tech/jikesbt.
[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J. Longtier, J. Irwan. Aspect-Oriented Programming.
In Proceedings of ECOOP’97, Springer-Verlag LNCS 1241,
June 1997.

[5] Martin Lippert home page. http://www.martinlippert.com/.

[6] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. In Communications of the ACM,
volume 15, pages 1053-1058, 1972.

