lt-aglle _/'

Merciless Refactoring with Eclipse

Martin Lippert, Matthias Lubken
it-agile GmbH
{martin.lippert, matthias.luebken}@it-agile.de
http://www.it-agile.de/ -
Agile
XP2006, Oulu Alliance

CORPORATE
MEMBER

Part 2: Large Refactorings

Part 1: Daily Refactoring
= Quick fixes
= Local refactorings
= Small refactorings

= Hands-on demonstrations

Part 2: Large Refactorings
= Large refactorings
Dependency management
Tools to detect and control refactorings

Some Demos

XP2006 Merciless Refactoring with Eclipse

it-agile
=

\
£
Lt

-
General principles it-agile E
‘S

= Refactoring is done in micro-steps

= These steps can be expressed as mechanics
= see mechanics in [Fowler 99]

= System is executable after each micro-step!!!
= Continuous integration.

= There are exceptions (like Rename Class without automation)

= So there are
= Safe Refactorings — during the mechanics no compile errors can occur
= Unsafe Refactorings — during the mechanics the system can break

RExn " XP2006 Merciless Refactoring with Eclipse 3

-
Refactoring in praxis it-agile E

‘S
= Ideal way:

= Before a new feature is implemented, the structure is checked if it is suitable for the
feature. If not: refactoring.

= Implementing feature. During implementation maybe further refactorings.
= After the refactorings the structure is checked if it is still good. If not: refactoring.

= Observation: refactorings are done to seldom

= Why?
= ,Idon't care.." ?
= Lack of discipline?
= Suspended refactorings are getting bigger!
= No testcases, to verify refactorings?

" XP2006 Merciless Refactoring with Eclipse 4

-
Consequences it-agile E
‘S

= The structure of the system degenerates and it's getting harder to implement
refactorings.

= The necessary refactorings are getting bigger and therefore more risky

= Refactoring is an elementary part of software development!!!

RExn " XP2006 Merciless Refactoring with Eclipse 5

Many small refactorings

= Often small refactorings are not hard:
= Uses little time
= Modern IDEs often assist
= Better than do big refactorings seldom

= Try to let the IDE do the refactorings!!!

XP2006 Merciless Refactoring with Eclipse

it aai l"\
it-agile

No Refactoring by Copy&Paste it-agile u

-~
‘m/

= Refactoring with Copy&Paste is old school!!!

.length > 0} {

for (int i = 0; i < wcp.getGeneratedClasses().length; i++4)
String generatedClassName = wop.getGeneratedClasses () [1]:
byte[] generatedClassBytecode = wcp.getGeneratedClassBytecode (generatedCla:
result.addhdditionalClasses (generatedClazssName, generatedClassBytecode):;

: ! & Extract Local Variable x|

Variable name:
ch {(BuntimeExce
/stem.out.print ¥ Replace all occurrences of the selected expression with references to the local variable

-printitackTrac [Dedare the local variable as 'final
h (Exception e
ystem. out.print Signature Preview: String[] generatedClasses
.printS5tackIrac

1 result;

Preview = | Ok I Cancel

z the informatiomr =oooc =W L o e L e S N o) P I W e § L el R
" 21 " =2
Rhen s XP2006 Merciless Refactoring with Eclipse 7
wham:

-~
Nevertheless big refactorings? it-agile u
‘m/
= Many small refactorings are good and irreplaceable.
= The also help us to improve the architecture of the system.
= Can big refactorings also be necessary?
= Yes:
= Misunderstanding: You don‘t have to bother about architecture in agile environments.
= Deadlines.
= Suspended small refactorings.
= Prototype goes productive.
= Incomplete/inconsistent view of requirements.
= System is very big and unclear.
= To many developers in a team.
= Everyone makes mistakes.
. 8

Rhen s XP2006 Merciless Refactoring with Eclipse

-~
Architecture-smells and big refactorings it—agile_/\l
'

In big projects often structural problems arise, so called architecture-smells.

= Architecture-smells are potential deficits in relationships among packages, modules,
classes.

Our experience: Every big project has architecture-smells.
(Big project: more than 6 developers, longer than 6 months)

Big refactorings help, to eliminate architecture-smells.

HE=n " XP2006 Merciless Refactoring with Eclipse 9

-~
Example fiir architecture-smell it-agile)
‘m

— . vl
filechooser
colrchooser
[1
L AN border
tet T
k3
swing awt = - beans
1]
table
basic
event
htmil
plaf

=§==' "u XP2006 Merciless Refactoring with Eclipse 10

More architecture-smells.

= Parallel inheritance hierarchies

= Wrong usages of inheritance

= Cycles between classes, packages, subsystems, layers
= Upfront technology, Overgeneralization
= Unused code

= To many dependencies to base classes
= No layers, subsystems

= To big packages, subsystems, layers

= Subsystem-API not used

= Subsystem-API to big

= Layer breakthrough

XP2006 Merciless Refactoring with Eclipse

it aai l"\
it-agile

11

-~
Big refactorings: characterization it—agile_/\l
'

= Lasts longer than one day

= Leads to many changes in many parts of the system
= Affects more than one developer / pair

= Big refactoring needs to be divided

= More than a list of small refactorings

= Contains often unsafe refactorings

= The consequences of steps are hard to predict
= Big refactoring must explicitly planned

= Intermediate steps have to be integrated

= Breaks often unit-tests

= It gets worse before it gets better

HE=n " XP2006 Merciless Refactoring with Eclipse 12

Big refactorings:) N
One step back, two ahead :-) lt-agl!s g

Design-Improvement

Refactoring-Steps

XP2006 Merciless Refactoring with Eclipse 13

i

~
Big refactorings: problems it-agile =
‘m/
= It's easy to run into a blind alley
= To continue with the development is not easy
= The overview can be lost
= Planning is difficult
= Security because of broken Unit-tests is reduced
= Project pressure tends to stop refactorings
= Half done refactorings make the system structure worse
RExn " XP2006 Merciless Refactoring with Eclipse 14

-~
Solving problems it-agile x
‘m/

= Best Practices:
= Refactor as soon as you smell something
= Use Refactoring-Tools (many features aren’t used properly)
= Tools to identify weaknesses (during development if possible)
= Don't be afraid of refactorings, but write test in advance
= Discuss refactorings in the team

= Patterns and practices for big refactorings

XP2006 Merciless Refactoring with Eclipse 15

-~
Best Practices: Planning of big refactorings it-agile)
'

= Integrate refactorings explicitly in the planning process

= Refactoring-budget per iteration
= Refactoring-iterations if needed
= Regular refactoring-iterations

XP2006 Merciless Refactoring with Eclipse 16

-~
Best practices: Refactoring-planning-session it-agile)
‘w

= Refactoring-planning-session

= Discuss and plan big refactorings with the whole team
= Area of tension: Upfront-Design vs. Refactoring-planning

=§==' " XP2006 Merciless Refactoring with Eclipse 17

Best Practices: Refactoring-plans it-agilz’)
‘w

= Creating Refactoring-plans

= Write down refactoring-route

= Publish refactoring-plan

= Use refactoring-plan as tracking instrument

= Mark unsafe refactoring steps

= Start with unsafe refactoring-steps if possible

=§==' . XP2006 Merciless Refactoring with Eclipse 18

-~
- - - ° @ \
Best Practices: redirection it-agile =
\._/
= Redirection
= To divide a refactoring into small steps, redirections have to be build into the code.
= By doing so a refactoring can be implemented step-by-step and the system stays
executable.
= Redirections have to be marked
= E.g. with deprecated tag.
;§==' :.' XP2006 Merciless Refactoring with Eclipse 19
4885

-
Best practices: safe-points it-agile)
‘m

= Safe-points
= Divide Refactoring into small steps

= Not after each steps the structure of
the systems gets better (redirections)

= Definition of safe-points: after each
step that made the system better but
hasn't reached the final design

Design-Improvement

v

Refactoring-Steps

Rhen s XP2006 Merciless Refactoring with Eclipse 20

-~
Best practices: branches it-agile)
‘m

= Branches and safe-points

= Branches are not useable for the complete refactoring (Merge effort would be to big)
= Use branches to a defined safe-point and than merge

XP2006 Merciless Refactoring with Eclipse 21

-~
Finding architecture-smells it—agile)
'

= Develop
= What is in the way?

= Listening to developers:
=, This is nerves, but we have no time to change."
=, This is not useable at all, but if we change it we might break everything."

= Tools for architecture analysis, e.g.
= Sotograph (http://www.sotograph.de).
= XRadar (http://xradar.sourceforge.net)
= Dr. Freud (http://www.freiheit.com)

= Other Tools, e.qg.
= PMD
= Findbugs
= Checkstyle

aLh XP2006 Merciless Refactoring with Eclipse 22

-~
Similarities between the tools it—agile_/\.
‘m

= QOpen Source
= Java
= Grown-up (at least good beta)

II=' " XP2006 Merciless Refactoring with Eclipse 23
L

Eclipse ! it-agilz’.\l
‘m/

= Use Eclipse-Warnings/Errors
= Eclipse has many build in code checks
= Preferences > Java > Compiler > Errors/Warnings

= Customize and enable warnings
= |ike "Null reference"

= Individual warnings can be ignored with @SuppressWarnings("null™)

= Best integration among tools o S ———

! Potential programming problems

[Install/Update
S| send lizable class without serial IVersionUID : Waming |+ |
- Appearance =
- Build Path Assignment has no effect (e.g. 'x =x): Warning ||
ode ‘SW'E Fgsi e it Bodert stment oWt B0E || o [l
mpiler !
Bulding “finally’ does not complet= narmally: Warming [s]
Errors/Wiarnings =l
Teniadot Empty statement: Ignore || |=
Task Tags Using a char array in string concatenation: Warning ||
[Debug =
- Editor Hidden catch black: Warning |w|
nstalled T
e Tnexact type match for vararg arguments: Warring |w|
perties Files Edito Boxing and unboxing conversions: Ignore | v
[Plugin Development =
Enum type constant not covered on 'switch's Ignore ||
& RunfDebug alih e s Igore]
[Team =
Mull reference: Warning {VI
= [aa

(&1 m | 2] Restore Defaults

RExn " XP2006 Merciless Refactoring with Eclipse 24

. ./.\
PMD it-agile =
\._/

= Static code scanner for Java
= Potential bugs
= |ike empty try/catch/finally/switch-statements
= Dead code
= Suboptimal code
= Like, for example, wasteful use of String/StringBuffer

= Duplicate code

= More see http://pmd.sourceforge.net/rules/
DON'T SHOOT THE MESSENGER

= Rule based
= Write own rules or customize existing rules
=§==' " XP2006 Merciless Refactoring with Eclipse 25

= Integrated in:
= Eclipse, IntelliJ's IDEA, Maven, Ant, ...

= Book:
= PMD Applied by Tom Copeland

-~
Example: PMD-Report of Hibernate it-agile)
‘m

PMD report =) Live- Demo

Problems found

File Line Problem

1 hibernate/Environment. java 246 Avoid unused private fields such as 'vmSupportsProxies’

2 hibernate/eg/Edge java 59 Avoid unused private methods such as 'setKev(long)

3 hibernate/eg/Edge java 67 Avoid unused private methods such as 'setCreationDate{Date)’

4 hibernate/eg/Vertex java 73 Avoid unused private methods such as 'setKey(long)

3 hibernate/eg/Vertex java 81 Avoid unused private methods such as 'setVersion(int)'

6 hibernate/'eg/Vertex java 89 Avoid unused private methods such as 'setCreationDate(Date)

7 hibernate/engine/Cascades java 206 Avoid unused private methods such as 'cascade(Sessionlmplementor Object. Tvpe Cascadins A ction int)'
8 hibernate/engine/Versioning java 49 Avoid unused formal parameters such as 'versionTvpe'

9 hibernate/engine/Versioning java 53 Avoid unused formal parameters such as 'versionTvpe'

10 hibernate/hetpers/IdentityMap java 68 Avoid unused formal parameters such as 'k’

11 hibernate/id UUIDStringGenerator java 55 Avoid unused private methods such as 'toString(int)'

12 hibernate/impl/CollectionPersister java 271 Avoid unused private methods such as 'getSQL SelectString()'

13 hibernate/impl/Quervimpl java 283 Avoid unused private methods such as 'suessType(Object)’

14 hibernate/impl'ScrollableResultsImpl java 25 Avoid unused private fields such as 'single’

15 hibernate/impl/SessionF actorylmpl java 90 Avoid unused private fields such as 'properties’

16 hibernate/impl/SessionF actorylmpl java 93 Avoid unused private fields such as 'supportsLocking’

17 hibernate/impl/SessionFactoryObjectFactory java 32 Avoid unused private fields such as TNSTANCE'

18 hibernate/impl/Sessionlmpl java 122 Avoid unused private fields such as ‘reentrantCallback’

19 hibernate/impl/Sessionlmpl java 829 Avoid unused private methods such as ‘removeCollectionsF or(ClassPersister, Senalizable Obiect)'

20 hibernate/impl/Sessionlmpl java 2063 Avoid unused formal parameters such as 'owner'

XP2006 Merciless Refactoring with Eclipse 26

- . . /.\
FindBugs it-agile =
‘m/

= http://findbugs.sourceforge.net/
= Searches for bugs in the code >
= Uses bug-pattern-concept
= Static code analysis of bytecode = Live-Demo
= Control with e
- Swing-GUI S,
= Ant-Task]V’ Jr

= Eclipse-Plugin Y-
' ARy S T
= Results in -
11 .
= HTML nna DugS
= Swing-GUI Decanse 1t's casy
= Eclipse

Ig._.' " XP2006 Merciless Refactoring with Eclipse 27

CheckStyle it-agi!g m
=

i

/

Static check of code conventions

Integration for
= Eclipse, Intelli)'s IDEA, NetBeans, JBuilder ...
Executable with
= Ant
" Maven = Live-Demo
Results in
= HTML
= Markers in IDEs
Rule based
= Write own rules = adjust to your own!

XP2006 Merciless Refactoring with Eclipse 28

XRadar

http://xradar.sourceforge.net/

Top down view of a SW-Project
= Static analysis with for current state
= Dynamic analysis with history

Integrates many other open source-tools

= JUnit, Cobertura, JCoverage, JDepend, PMD, CheckStyle, JavaNCSSs ...

Results are concentrated in

= HTML-tables
= SVG-grafics
Executable with

= Ant
= Maven

XP2006

Merciless Refactoring with Eclipse

it-agile
[

i

|
/

29

-~
XRadar — Example 1/3 — Static analysis it-agi!e)
[|
Fe S e smconeiozerg 580
mode mode R =

E
madule

h s XP2006 Merciless Refactoring with Eclipse

W

0

XRadar — Example 2/3 — Static analysis

Snapshot - Net

picture,

Core Metrics
Packages =

Classes =
Source Statements =

Cyclomatic Complexity =
-‘“it o

5 " XP2006 Merciless Refactoring with Eclipse

+ .I"\
it-agile

This text describes the subsystemn. The

text pops up on the screen when you focus

on the module. You can use it for educational
purposes of both new developers and managers
on the system. Below you find some core
metrics, and how they relate to the overall

35 (10.6%)
503 (10.8%)
22527 (17.7%)
7296 (16.5%)
38.6%

31

0.6

0.58

0.56

0.53

0.51

XRadar — Example 1/3 — Static analysis

-~
it-agile }
=

/

0.52 ;-
041 L
0.29
.18

0.07 L

-0.05

B.1

XP2006

9.3

10.011.012.0 13.0

14,0150 15.1 14 7.2 8.1

Merciless Refactoring with Eclipse

9.3

10.011.012.0 13.0

14.015.0 15.1

16

32

Conclusion it-agil:’
'

Refactoring code is more important than coding.

= We use more time improving existing code than implementing new code.

Use refactoring-tools!!!
Refactorings are only safe with unit-tests!

Really important:
= Refactorings should not be suspended!
= Refactorings have to be discussed in a team!

= Ask the experts! ;-)

RExn " XP2006 Merciless Refactoring with Eclipse

\
£
L

33

Some advertisement ... ;-)

= Refactoring-introduction

= Architecture-smells

= Characteristics of big refactorings
= Parts of refactorings

= Process aspects

= Database and refactoring

= APIs und refactoring

Stefan Roock - Martin Lippert

Refactorings
in groflSen
Softwareprojekten

Komplexe Restrukturierungen erfolgreich durchfithren

I“Z"WILEY ?,‘ TIMELY, PRACTICAL. RELIABLE,
Refactoring
eiactoring
- .

in I.arge |

Software Projects

Performing
complex :
restructurings s
successfully »##88

Stefan Roock
Martin Lippert

Translated by Bettina von Stocketh

nh XP2006 Merciless Refactoring with Eclipse 34

-
® o \
More references it-agile =
‘m/
= Martin Fowler: Refactoring — RFFACTOE){ING

fmp/‘ OV/ng the DES/:gn of EX/St/ng oF ExisTING CODE
Code, Addison-Wesley, 1999

Joshua Kerievsky: Refactoring to

Patterns, Addison-Wesley, 2004 i}f%"éﬁiﬁ(
William Wake: Refactoring Workbook, 2 . L
Addison-Wesley, 2003.)

REractorinG
On the road: WORKBOOK
= Ramnivas Laddad: Aspect Oriented
Refactoring, Addison-Wesley, 2006 Withaas C: Wake
= Scott W. Ambler, Pramodkumar J. | \
Sadalage: Refactoring Databases:
Evolutionary Database Design, Addison- L R s

WeSIeYI 2006 [DATABASES R EFACTORING

XP2006 Merciless Refactoring with Eclipse 35

. ./.\
The end it-agile =
\._/

= Thank you for your attention. Feedback is welcome!
Martin Lippert: martin.lippert@it-agile.de
Matthias Libken: matthias.luebken@it-agile.de

= Some interesting references:

= http://www.refactoring.com/: Maintained by Martin Fowler, contains a lot of
useful other references, articles, tools catalog, ...

= http://www.refactoring.be/: Refactoring Thumbnails as a visualization for
refactorings

= http://groups.yahoo.com/group/refactoring: Refactoring mailing list at
Yahoo

HE=n " XP2006 Merciless Refactoring with Eclipse 36

