
Merciless Refactoring with Eclipse

Martin Lippert, Matthias Lübken
it-agile GmbH

{martin.lippert, matthias.luebken}@it-agile.de
http://www.it-agile.de/

XP2006, Oulu

XP2006 Merciless Refactoring with Eclipse 2

Part 2: Large Refactorings

Part 1: Daily Refactoring
Quick fixes
Local refactorings
Small refactorings

Hands-on demonstrations

Part 2: Large Refactorings
Large refactorings
Dependency management
Tools to detect and control refactorings

Some Demos

XP2006 Merciless Refactoring with Eclipse 3

General principles

Refactoring is done in micro-steps
These steps can be expressed as mechanics

see mechanics in [Fowler 99]

System is executable after each micro-step!!!
Continuous integration.

There are exceptions (like Rename Class without automation)
So there are

Safe Refactorings – during the mechanics no compile errors can occur
Unsafe Refactorings – during the mechanics the system can break

XP2006 Merciless Refactoring with Eclipse 4

Refactoring in praxis

Ideal way:
Before a new feature is implemented, the structure is checked if it is suitable for the
feature. If not: refactoring.
Implementing feature. During implementation maybe further refactorings.
After the refactorings the structure is checked if it is still good. If not: refactoring.

Observation: refactorings are done to seldom

Why?
„I don’t care…“ ?
Lack of discipline?
Suspended refactorings are getting bigger!
No testcases, to verify refactorings?

XP2006 Merciless Refactoring with Eclipse 5

Consequences

The structure of the system degenerates and it‘s getting harder to implement
refactorings.
The necessary refactorings are getting bigger and therefore more risky

Refactoring is an elementary part of software development!!!

XP2006 Merciless Refactoring with Eclipse 6

Many small refactorings

Often small refactorings are not hard:
Uses little time
Modern IDEs often assist
Better than do big refactorings seldom

Try to let the IDE do the refactorings!!!

XP2006 Merciless Refactoring with Eclipse 7

No Refactoring by Copy&Paste

Refactoring with Copy&Paste is old school!!!

XP2006 Merciless Refactoring with Eclipse 8

Nevertheless big refactorings?

Many small refactorings are good and irreplaceable.
The also help us to improve the architecture of the system.

Can big refactorings also be necessary?
Yes:

Misunderstanding: You don’t have to bother about architecture in agile environments.
Deadlines.
Suspended small refactorings.
Prototype goes productive.
Incomplete/inconsistent view of requirements.
System is very big and unclear.
To many developers in a team.
Everyone makes mistakes.
…

XP2006 Merciless Refactoring with Eclipse 9

Architecture-smells and big refactorings

In big projects often structural problems arise, so called architecture-smells.

Architecture-smells are potential deficits in relationships among packages, modules,
classes.

Our experience: Every big project has architecture-smells.
(Big project: more than 6 developers, longer than 6 months)

Big refactorings help, to eliminate architecture-smells.

XP2006 Merciless Refactoring with Eclipse 10

Example für architecture-smell

XP2006 Merciless Refactoring with Eclipse 11

More architecture-smells.

Parallel inheritance hierarchies
Wrong usages of inheritance
Cycles between classes, packages, subsystems, layers
Upfront technology, Overgeneralization
Unused code
To many dependencies to base classes
No layers, subsystems
To big packages, subsystems, layers
Subsystem-API not used
Subsystem-API to big
Layer breakthrough
...

XP2006 Merciless Refactoring with Eclipse 12

Big refactorings: characterization

Lasts longer than one day
Leads to many changes in many parts of the system
Affects more than one developer / pair
Big refactoring needs to be divided
More than a list of small refactorings
Contains often unsafe refactorings
The consequences of steps are hard to predict
Big refactoring must explicitly planned
Intermediate steps have to be integrated
Breaks often unit-tests
It gets worse before it gets better

XP2006 Merciless Refactoring with Eclipse 13

Big refactorings:
One step back, two ahead :-)

XP2006 Merciless Refactoring with Eclipse 14

Big refactorings: problems

It‘s easy to run into a blind alley
To continue with the development is not easy
The overview can be lost
Planning is difficult
Security because of broken Unit-tests is reduced
Project pressure tends to stop refactorings

Half done refactorings make the system structure worse

XP2006 Merciless Refactoring with Eclipse 15

Solving problems

Best Practices:
Refactor as soon as you smell something
Use Refactoring-Tools (many features aren’t used properly)
Tools to identify weaknesses (during development if possible)
Don’t be afraid of refactorings, but write test in advance
Discuss refactorings in the team

Patterns and practices for big refactorings

XP2006 Merciless Refactoring with Eclipse 16

Best Practices: Planning of big refactorings

Integrate refactorings explicitly in the planning process

Refactoring-budget per iteration
Refactoring-iterations if needed
Regular refactoring-iterations

XP2006 Merciless Refactoring with Eclipse 17

Best practices: Refactoring-planning-session

Refactoring-planning-session

Discuss and plan big refactorings with the whole team
Area of tension: Upfront-Design vs. Refactoring-planning

XP2006 Merciless Refactoring with Eclipse 18

Best Practices: Refactoring-plans

Creating Refactoring-plans

Write down refactoring-route
Publish refactoring-plan
Use refactoring-plan as tracking instrument
Mark unsafe refactoring steps
Start with unsafe refactoring-steps if possible

XP2006 Merciless Refactoring with Eclipse 19

Best Practices: redirection

Redirection
To divide a refactoring into small steps, redirections have to be build into the code.
By doing so a refactoring can be implemented step-by-step and the system stays
executable.
Redirections have to be marked

E.g. with deprecated tag.

XP2006 Merciless Refactoring with Eclipse 20

Best practices: safe-points

Safe-points
Divide Refactoring into small steps
Not after each steps the structure of
the systems gets better (redirections)
Definition of safe-points: after each
step that made the system better but
hasn’t reached the final design

D
es
ig
n-
Im
pr
ov
em
en
t

Refactoring-Steps

XP2006 Merciless Refactoring with Eclipse 21

Best practices: branches

Branches and safe-points

Branches are not useable for the complete refactoring (Merge effort would be to big)
Use branches to a defined safe-point and than merge

XP2006 Merciless Refactoring with Eclipse 22

Finding architecture-smells

Develop
What is in the way?

Listening to developers:
„This is nerves, but we have no time to change.“
„This is not useable at all, but if we change it we might break everything.“

Tools for architecture analysis, e.g.
Sotograph (http://www.sotograph.de).
XRadar (http://xradar.sourceforge.net)
Dr. Freud (http://www.freiheit.com)
...

Other Tools, e.g.
PMD
Findbugs
Checkstyle
...

XP2006 Merciless Refactoring with Eclipse 23

Similarities between the tools

Open Source
Java
Grown-up (at least good beta)

XP2006 Merciless Refactoring with Eclipse 24

Eclipse !

Use Eclipse-Warnings/Errors
Eclipse has many build in code checks
Preferences > Java > Compiler > Errors/Warnings
Customize and enable warnings

like "Null reference"

Individual warnings can be ignored with @SuppressWarnings("null")

Best integration among tools

XP2006 Merciless Refactoring with Eclipse 25

PMD

Static code scanner for Java
Potential bugs

like empty try/catch/finally/switch-statements
Dead code
Suboptimal code

Like, for example, wasteful use of String/StringBuffer
Duplicate code
More see http://pmd.sourceforge.net/rules/

Rule based
Write own rules or customize existing rules

Integrated in:
Eclipse, IntelliJ‘s IDEA, Maven, Ant, …

Book:
PMD Applied by Tom Copeland

XP2006 Merciless Refactoring with Eclipse 26

Example: PMD-Report of Hibernate

Live-Demo

XP2006 Merciless Refactoring with Eclipse 27

FindBugs

http://findbugs.sourceforge.net/
Searches for bugs in the code
Uses bug-pattern-concept
Static code analysis of bytecode
Control with

Swing-GUI
Ant-Task
Eclipse-Plugin

Results in
HTML
Swing-GUI
Eclipse

Example

Live-Demo

XP2006 Merciless Refactoring with Eclipse 28

CheckStyle

Static check of code conventions
Integration for

Eclipse, IntelliJ‘s IDEA, NetBeans, JBuilder …

Executable with
Ant
Maven

Results in
HTML
Markers in IDEs

Rule based
Write own rules adjust to your own!

Live-Demo

XP2006 Merciless Refactoring with Eclipse 29

XRadar

http://xradar.sourceforge.net/
Top down view of a SW-Project

Static analysis with for current state
Dynamic analysis with history

Integrates many other open source-tools
JUnit, Cobertura, JCoverage, JDepend, PMD, CheckStyle, JavaNCSS …

Results are concentrated in
HTML-tables
SVG-grafics

Executable with
Ant
Maven

XP2006 Merciless Refactoring with Eclipse 30

XRadar – Example 1/3 – Static analysis

XP2006 Merciless Refactoring with Eclipse 31

XRadar – Example 2/3 – Static analysis

XP2006 Merciless Refactoring with Eclipse 32

XRadar – Example 1/3 – Static analysis

XP2006 Merciless Refactoring with Eclipse 33

Conclusion

Refactoring code is more important than coding.

We use more time improving existing code than implementing new code.

Use refactoring-tools!!!
Refactorings are only safe with unit-tests!

Really important:
Refactorings should not be suspended!
Refactorings have to be discussed in a team!

Ask the experts! ;-)

XP2006 Merciless Refactoring with Eclipse 34

Refactoring-introduction
Architecture-smells
Characteristics of big refactorings
Parts of refactorings
Process aspects
Database and refactoring
APIs und refactoring

Some advertisement … ;-)

XP2006 Merciless Refactoring with Eclipse 35

More references

Martin Fowler: Refactoring –
Improving the Design of Existing
Code, Addison-Wesley, 1999
Joshua Kerievsky: Refactoring to
Patterns, Addison-Wesley, 2004
William Wake: Refactoring Workbook,
Addison-Wesley, 2003.

On the road:
Ramnivas Laddad: Aspect Oriented
Refactoring, Addison-Wesley, 2006
Scott W. Ambler, Pramodkumar J.
Sadalage: Refactoring Databases:
Evolutionary Database Design, Addison-
Wesley, 2006

XP2006 Merciless Refactoring with Eclipse 36

The end

Thank you for your attention. Feedback is welcome!
Martin Lippert: martin.lippert@it-agile.de
Matthias Lübken: matthias.luebken@it-agile.de

Some interesting references:
http://www.refactoring.com/: Maintained by Martin Fowler, contains a lot of
useful other references, articles, tools catalog, …
http://www.refactoring.be/: Refactoring Thumbnails as a visualization for
refactorings
http://groups.yahoo.com/group/refactoring: Refactoring mailing list at
Yahoo

