
Merciless Refactoring with Eclipse

Martin Lippert, Matthias Lübken
it-agile GmbH

{martin.lippert, matthias.luebken}@it-agile.de
http://www.it-agile.de/

XP2006, Oulu

XP2006 Merciless Refactoring with Eclipse 2

Part 1: Daily Refactoring

Part 1: Daily Refactoring
Quick fixes
Local refactorings
Small refactorings

Hands-on demonstrations

Part 2: Large Refactorings
Large refactorings
Dependency management
Tools to detect and control refactorings

Some Demos

XP2006 Merciless Refactoring with Eclipse 3

Contents 1/2

Refactoring – a short introduction

The classics:
Rename and Move

Working with variables
Extract Local Variable
Convert Local Variable into Field

Working with methods
Extract Method
Change Method Signature
Inline Method

XP2006 Merciless Refactoring with Eclipse 4

Contents 2/2

Working with types
Extract Interface
Infer Generic Type Arguments

Combined refactorings:
Inline Constructor

Links and books

* The material provided here is based on Eclipse 3.1

XP2006 Merciless Refactoring with Eclipse 5

What is refactoring?

„A change made to the internal
structure of software to make it
easier to unterstand and cheaper
to modify without changing its
observable behavior“

[Fowler 99]

XP2006 Merciless Refactoring with Eclipse 6

Refactoring mechanics

[Fowler 99] describes detailed mechanics for each refactoring. These
mechanics allow developers to realize the refactoring in small steps
while reducing the danger of changing the behavior (introducing new
bugs)

Nevertheless some refactorings are expensive to implement:
Rename a method requires to adapt all references to this method manually

The danger of introducing errors or changing the behavior still exists
A good test suite is required to be as safe as possible

XP2006 Merciless Refactoring with Eclipse 7

Refactoring tools

It is a good idea to automate as many refactorings as possible
But: The tool must ensure that it does not change the behavior
of the system (or should warn about possible changes)

Smalltalk Refactoring Browser was the first tool that automated
refactorings

Written by John Brant & Don Roberts

Meanwhile most Java IDEs include refactoring support.
IDEs for other languages appear

XP2006 Merciless Refactoring with Eclipse 8

Our goal

We want to refactor our systems by using the automated
refactorings of Eclipse – and nothing else !!!

Let Eclipse ensure that the behavior of our system does not change
Speed up the refactoring work

Identify the circumstances where we should be attentive while using the
refactoring support of Eclipse

XP2006 Merciless Refactoring with Eclipse 9

Refactoring in practice

Rather than talking about all the refactoring possibilities of Eclipse in
theory, I would like to present them interactively

The slides are the reference
You can find all refactorings explained in the slides
But I will not show all slides here

XP2006 Merciless Refactoring with Eclipse 10

Refactoring: Rename

Rename works on:
Packages
Classes
Methods
Parameters
Variables

Automatically adapts all references to those elements, including:
File names
Folder names
Javadoc @param tags

XP2006 Merciless Refactoring with Eclipse 11

Attention: “Rename in file” is different

The “Rename in file” feature is different from the rename refactoring:
“Rename in file” automatically updates all references to the selected element
within the same file – and nothing else.
Does not check whether the element is used from outside and does not update
those references

Never use Rename in file for non-local elements – otherwise
you assume the risk of introducing errors and behavior
changes

Use “Rename in file” only for local elements
Local variables
Parameters
Private attributes
Private methods
Private inner classes

XP2006 Merciless Refactoring with Eclipse 12

Attention: Renaming of interface
methods

If you rename a method in a class that implements identical methods
from two or more interfaces, all definitions of that method in all
implemented interfaces change (and therefore in all classes that
implement those interfaces)

getCustomer(int customerNo)

«Interface»
ICustomerService

getCustomer(int customerNo)

CustomerService

getCustomer(int customerNo)

«Interface»
IAccountService

getCustomer(int customerNo)

AccountService

Method rename here means also changing the method name here

XP2006 Merciless Refactoring with Eclipse 13

Rename and non-java sources ???

The rename refactoring is able to find all references to a class name,
for example, in Java files

By using the parser information

What happens to class-references in non-java files?
Extension definitions in plugin.xml files?
JavaServer Pages?
XML configuration files (e.g. Spring)?

XP2006 Merciless Refactoring with Eclipse 14

Rename and .xml files

The rename refactoring of Eclipse is able to find class-references in any
kind of file (e.g. .xml) if the class if fully qualified

This works for:
plugin.xml
Spring config files

This does not work for:
import-like class usages
method names

XP2006 Merciless Refactoring with Eclipse 15

Refactoring: Move

Works on:
Classes
Packages

Automatically adapts all references to moved elements, including:
Import statements
Full-qualified class statements

XP2006 Merciless Refactoring with Eclipse 16

Refactoring: Extract Local Variable

Allows you to extract a statement into a local variable at a single
keystroke
Replaces all occurrences of the statement (within the same block)
with the new local variable

Seldom used refactoring because most people are used to cut&paste
those statements into new variable declarations
But this refactoring is extremely useful for everyday programming

XP2006 Merciless Refactoring with Eclipse 17

Extract Local Variable

XP2006 Merciless Refactoring with Eclipse 18

Refactoring: Convert Local Variable to
Field

Allows you to convert a local variable into a field of the surrounding
class at a single keystroke
Seldom used refactoring because most people are used to cut&paste
those declarations from the local context into the field declarations part
of a class
But this refactoring makes
it a lot easier

XP2006 Merciless Refactoring with Eclipse 19

Refactoring: Extract Method

Allows you to extract a code block into a separate method at a single
keystroke:

Generates the necessary set of parameters
Create the correct return type
Warns you if more than one return value is necessary

This is extremely useful to split large methods into smaller ones
I also use this refactoring to experiment with different method
splittings

XP2006 Merciless Refactoring with Eclipse 20

Extract Method example

XP2006 Merciless Refactoring with Eclipse 21

Attention: Extract Method

If you extract a method from an anonymous inner class that exists
inside a non-anonymous inner class, you have to take care:

If a method in the non-anonymous inner class exists with the same signature as
your extracted method, Eclipse does not warn you about possible conflicts

Extract the method into the anonymous inner class
Everything is fine

Extract the method into the non-anonymous inner class
Results in compiler warnings because a method with the same signature already
exists in that class

Extract the method into the surrounding class
Results in possible behavior changes because the anonymous inner class calls
the method with the same signature from the non-anonymous inner class and
not the extracted one in the outer class

XP2006 Merciless Refactoring with Eclipse 22

Refactoring: Change Method Signature

Allows you to change the signature of a method at a single click
Rename the method itself
Change the access modifier
Add, remove, rename and reorder parameters (including default values for new
parameters)
Change the type of the return value or parameters
Add and remove exceptions

Adapts all references to this method, if possible
Interfaces as well as implementing classes
Calls to this method

This is one of the most powerful refactorings within Eclipse
(from my point of view)

XP2006 Merciless Refactoring with Eclipse 23

Refactoring: Change Method Signature

XP2006 Merciless Refactoring with Eclipse 24

Inline Considered Helpful

Inline refactoring replaces the invocation of the method with the
method’s code
Eclipse warns you in case of overridden methods

Seems like this refactoring creates duplicated code

Extremely useful to remove deprecated calls:
Implement the old method by using the new methods
Then the implementation of the old method looks like the client code of the new
method(s)
Inline old method to replace all invocations of the old method by invocations of
the new method(s)

XP2006 Merciless Refactoring with Eclipse 25

Best Practices: Inline Method

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

...
String meinDokument = ...;
...
meinDrucker.drucke(meinDokument);
...

...
String meinDokument = ...;
...
meinDrucker.drucke(meinDokument);
...

XP2006 Merciless Refactoring with Eclipse 26

Best Practices: Inline Method

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

...
String meinDokument = ...;
...
meinDrucker.druckeDokument(new Dokument(meinDokument));
...

...
String meinDokument = ...;
...
meinDrucker.druckeDokument(new Dokument(meinDokument));
...

XP2006 Merciless Refactoring with Eclipse 27

Refactoring: Extract Interface

Extract a new interface from an existing class very comfortable by
selecting the appropriate methods.

The secret power of this refactoring is:
Eclipse changes declarations in the client code from the class to the interface
type where possible
You not just extract the interface type, you also use the new abstraction in the
client code right away

XP2006 Merciless Refactoring with Eclipse 28

Refactoring: Infer Generic Type
Arguments

XP2006 Merciless Refactoring with Eclipse 29

Advanced: Inline Constructor

Problem: A constructor that is deprecated and uses this(..) to adapt
invocations to a new constructor.
But we cannot inline the constructor since the inline refactoring is
allowed for methods only.

Solution:
1. Introduce Factory for the deprecated constructor.
2. Replace the body of the factory (to use the new constructor)
3. Inline the factory method.

XP2006 Merciless Refactoring with Eclipse 30

Some advertisement ☺

Best practices for performing
complex refactorings

Covers:
Short introduction to refactoring
Architecture smells
Large refactorings
API-Refactorings
Database-Refactorings
Guest chapter: Finding and
analyzing architecture smells

“War Stories” from Sven Gorts,
Berrin Ileri, Dierk König, Klaus
Marquardt, Jens-Uwe Pipka,
Markus Völter and Henning Wolf

XP2006 Merciless Refactoring with Eclipse 31

Other books

Martin Fowler: Refactoring –
Improving the Design of Existing
Code, Addison-Wesley, 1999
Joshua Kerievsky: Refactoring to
Patterns, Addison-Wesley, 2004
William Wake: Refactoring
Workbook, Addison-Wesley, 2003.

On the road:
Ramnivas Laddad: Aspect Oriented
Refactoring, Addison-Wesley, 2006
Scott W. Ambler, Pramodkumar J.
Sadalage: Refactoring Databases:
Evolutionary Database Design,
Addison-Wesley, 2006

XP2006 Merciless Refactoring with Eclipse 32

The end.

Thank you for your attention. Feedback is welcome!
Martin Lippert: martin.lippert@it-agile.de
Matthias Lübken: matthias.luebken@it-agile.de

Some interesting references:
http://www.refactoring.com/: Maintained by Martin Fowler, contains a lot of
useful other references, articles, tools catalog, …
http://www.refactoring.be/: Refactoring Thumbnails as a visualization for
refactorings
http://groups.yahoo.com/group/refactoring: Refactoring mailing list at Yahoo

