
© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

1

December 10, 2006 – The Spring Experience 2006

Spring and Eclipse RCP

Martin Lippert
akquinet agile GmbH
lippert@acm.org
Equinox Incubator Committer

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 2

Agenda

What is the Eclipse Rich Client Platform?

Spring and Eclipse RCP
Spring Backends for Eclipse RCP

Eclipse RCP + Spring on Client and Server

OSGi and Spring everywhere

More Spring on the Client

Conclusions

© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

3

December 10, 2006 – The Spring Experience 2006

What is Eclipse Rich Client Platform?

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 4

Eclipse is a Composition of Components

Equinox

SWTJFace

UI
Update

Runtime

IDE UI

LTK

Search

Debug

Help

Team

Ant

JDT

PDE

Eclipse SDK/Java IDE

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 5

Generic IDE Components

Equinox

SWTJFace

UI
Update

Runtime

IDE UI

LTK

Search

Debug

Help

Team

Ant

JDT

PDE

Eclipse IDE

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 6

Eclipse Rich Client Platform

Equinox

SWTJFace

UI
Update

Runtime

IDE UI

LTK

Search

Debug

Help

Team

Ant

JDT

PDE

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 7

Why Use Eclipse Rich Client Platform?

A consistent and native look and feel across applications and
features
Provides common application services

Native look and feel
Window management
Standardized component model (Equinox)

Pervasive extensibility – Extension registry
Update Manager

Help system
First-class development tools
Middleware for building rich client applications!

Allows programmers to focus on core application not the plumbing
Don’t reinvent the wheel

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 8

Equinox

Equinox is the Eclipse component model
Based on OSGi R4 specification

Standard Java lacks an explicit notion of components

Components == Bundles == Plug-in
Versioned

Defined declaratively

Dynamically loadable/unloadable

Support dynamic update and install

Explicitly define
Dependencies

Runtime visibility

Interactions (extension points/extensions) Eclipse RCP

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 9

The typical RCP Application

Rich user experience

Platform independent

Component model

Integrated update mechanism

Extensible

Typically (though not necessarily) a client for some backend
service

Application Server

Rich Client

B
us

in
es

s
Lo

gi
c

an
d

Pr
oc

es
s

C
on

tr
ol

DataVi
ew

ok

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 10

Example: GIS

http://udig.refractions.net/confluence/display/UDIG/Homehttp://udig.refractions.net/confluence/display/UDIG/Home

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 11

Example: ForeFlight

Displays critical
information
graphically and
prominently

Displays alerts
when conditions are
near or exceeding
the user's preferred
limits

Connects via the
web to weather and
information services

Multiple ergonomic
views of the weather
that affects the
go/no-go flight
decision

http://www.foreflight.com/http://www.foreflight.com/

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 12

Example: Lotus Notes “Hannover”

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 13

Example: RSS Solutions
Advanced planning and scheduling (APS) solutions

http://www.eclipse.org/community/casestudies/RSSfinal.pdfhttp://www.eclipse.org/community/casestudies/RSSfinal.pdf

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 14

Example: Maestro – NASA Space Mission
Management

http://www.eclipse.org/community/casestudies/NASAfinal.pdfhttp://www.eclipse.org/community/casestudies/NASAfinal.pdf

© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

15

December 10, 2006 – The Spring Experience 2006

Spring Backends for Eclipse RCP

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 16

Spring-based Backends

Spring is great for implementing the backend:
Dependency injection for the implementation

AOP for cross-cutting and interceptor-based features

Easy transaction handling

Easy integration of other technology like O/R mapping, security,
and so on…

It is a natural choice to implement the backend using Spring

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 17

Pure RCP Client for the Spring Backend

Client: Pure RCP

Server: Pure Spring

Ways to communicate, for example:
Server provides RESTful/SOAP services, client consumes via HTTP

Server provides services via RMI, client consumes via RMI

Application Server

Rich Client

B
us

in
es

s
Lo

gi
c

an
d

Pr
oc

es
s

C
on

tr
ol

DataVi
ew

ok Sp
rin

g-
Ex

po
rt

erHTTP, RMI, …

Eclipse RCP Spring

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 18

Evaluation

Unrestricted usage of Spring on the server

Unrestricted usage of RCP on the client
Including additional features like data binding support, BIRT, …

Simple communication protocol (which is good)
But difficult for sophisticated remote interfaces

Different deployment and programming models
(OSGi bundles on the client, typical WAR file on the server)

Good for highly decoupled systems

Difficult for more integrated systems

© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

19

December 10, 2006 – The Spring Experience 2006

Eclipse RCP + Spring on Client and Server

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 20

The Spring-OSGi bridge

Spring-OSGi is an additional Spring project

Allows to use Spring in OSGi applications
Per-Bundle application context definition

Application context initialization at bundle activation

New <osgi:…> namespace:
Spring-Beans as OSGi-Services and vice versa

Dynamic behavior of OSGi via proxies

Inter-bundle dependency injection

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 21

Spring and Equinox combined

Easy to use

But it is just the beginning, the
base infrastructure

The interplay with the Spring
libraries need to be investigated
in the future

Classloading could cause
problems with third-party libraries
that are used by Spring

Detailed information:
http://www.springframework.org/
osgi/

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 22

RCP + Spring on the Client

Client: Eclipse RCP + Spring/OSGi

Server: Pure Spring

Uses Spring/Remoting for remote communication
With all the possible variations (RMI, HTTPInvoker, Hessian,
Burlap, etc.)

Application Server

Rich Client

B
us

in
es

s
Lo

gi
c

an
d

Pr
oc

es
s

C
on

tr
ol

DataVi
ew

ok Sp
rin

g-
Ex

po
rt

er

Sp
rin

g-
Pr

ox
yB

ea
n

Eclipse RCP

SpringSpring

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 23

Evaluation

Unrestricted usage of Spring on the client and the server

Unrestricted usage of RCP on the client

Easy remote communication via Spring/Remoting on both sides

Still different deployment and programming models
(OSGi bundles on the client, typical WAR file on the server)

Although most likely classes are shared between client and server

© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

24

December 10, 2006 – The Spring Experience 2006

OSGi and Spring everywhere

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 25

Eclipse Rich Server Platform (RSP)

Equinox

SWTJFace

UI
Update

Runtime

IDE UI

LTK

Search

Debug

Help

Team

Ant

JDT

PDE

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 26

Server-side Eclipse

Why use the Equinox component technology only on the client
side?

Component model

Update mechanism

Extensibility

All interesting for server-side applications as well

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 27

Server-side Equinox/OSGi is well accepted…

WAS 6.1

Adobe Version Cue

Apache Harmony

Eclipse Rich AJAX Platform

…

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 28

Middle-tiers on Equinox

Equinox can be used to implement middle-tiers
Same component model on both sides

Same extensibility for both sides

Client and server could share the same components

Integration with web-/app-servers possible

Application Server

Rich Client

B
us

in
es

s
Lo

gi
c

an
d

Pr
oc

es
s

C
on

tr
ol

DataVi
ew

ok Sp
rin

g-
Ex

po
rt

er

Sp
rin

g-
Pr

ox
yB

ea
n

Equinox OSGi

SpringSpringEclipse RCP (UI-Part)

Equinox OSGi

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 29

Example: Remoting for POJOs

Client Dispatcher-
Servlet

HTTP-
Exporter

HTTP-
Exporter

HTTP-
Exporter

POJO-
Service

POJO-
Service

POJO-
Service

Proxy/
Bridge-
Servlet

HTTP-
Proxy

HTTP-
Proxy

HTTP-
Proxy

ServicesSpringEclipseSpringRich-Client

Client
JVM, Eclipse Rich Client Platform

Server
JVM, Servlet-Container, Equinox OSGi Runtime

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 30

Equinox-based web apps

Equinox can run inside a web app or the web-app can run on top
of Equinox

Web-app can be componentized

Web-app can be designed and implemented for extensibility
(Extension-Points)

© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

31

December 10, 2006 – The Spring Experience 2006

More Spring on the RCP-based Client

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 32

More Spring on the Rich Client

How can we benefit from Spring on the client aside from
Spring/Remoting?

Dependency injection and all other technology abstractions
usable as well

Just straight forward using Spring/OSGi

How to incorporate this with the Extension-Registry?
For example, inject dependencies into views and editors?

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 33

The typical Extension Definition

We define a view via an extension

The view itself is created by the workbench via the extension
registry on demand

<extension point="org.eclipse.ui.views">
<view

name="My View"
class="org.eclipse.example.rcpspring.MyView"
id="org.eclipse.example.rcpspring.view">

</view>
</extension>

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 34

Defining the View via Spring

Instead we would like to inject dependencies into the view

Therefore we define the view “bean” within the Spring context

<bean id="injectedView“
class="org.eclipse.example.rcpspring.MyInjectedView">

<property name="businessService“
ref="businessService"/>

</bean>

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 35

Adapt the Extension Definition

Instead of the view directly we declare a factory in the extension
definition

<extension point="org.eclipse.ui.views">
<view

name="My Injected View"
class="org.eclipse.example.rcpspring.

MyInjectedViewFactory"
id="org.eclipse.example.rcpspring.injectedview">

</view>
</extension>

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 36

Creating an Extension Factory

The Extension-Registry now creates the factory instead of the view
and calls setInitializationData(..) and create()

public class MyInjectedViewFactory implements
IExecutableExtensionFactory, IExecutableExtension {

public Object create() throws ... {
return this.view;}

public void setInitializationData(..) throws ... {
this.view = (MyInjectedView)

Activator.getAppContext().getBean("injectedView");
this.view.setInitializationData(..);

}

...

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 37

Side Note: Extension-Registry vs. DI

Extension-Registry:
Designed to open-up specific parts of a component for extension

Scalable through declarative metadata

Dependency Injection:
Designed to de-couple classes

No metadata, not designed for scalability

© 2002 IBM Corporation

Confidential | Date | Other Information, if necessary

38

December 10, 2006 – The Spring Experience 2006

Conclusions

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 39

Conclusion

A big step forward:
A homogeneous programming and deployment model through the
usage of Equinox/OSGi and Spring for Client and Server
Eclipse RCP as UI framework for the rich client

Component model for client and server (through OSGi
component model and Spring dependency injection)

Extensibility for client and server (through Extension-Registry)

Technology abstractions for client and server (through Spring)

What else do we need? ;-)

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 40

Thank you for your attention!

Questions welcome !!!

Special thanks to Jeff McAffer for feedback and material

Martin Lippert

lippert@acm.org

Copyright © 2006 Martin Lippert, Made available under the Eclipse Public License v 1.0 41

Recommended RCP Reading

Eclipse Rich Client Platform
By Jeff McAffer and Jean-Michel Lemieux

Addison-Wesley Professional

ISBN: 0321334612

SWT : The Standard Widget Toolkit, Volume 1
By Steve Northover, Mike Wilson

Addison-Wesley Professional

ISBN: 0321256638

Contributing to Eclipse: Principles, Patterns, and Plugins
By Erich Gamma, Kent Beck

Addison-Wesley Professional

ISBN: 0321205758

