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What is Eclipse Rich Client Platform?
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Eclipse Rich Client Platform
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Why Use Eclipse Rich Client Platform?

A consistent and native look and feel across applications and 
features
Provides common application services 

Native look and feel
Window management
Standardized component model (Equinox)

Pervasive extensibility – Extension registry
Update Manager

Help system
First-class development tools
Middleware for building rich client applications!

Allows programmers to focus on core application not the plumbing
Don’t reinvent the wheel
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Equinox

Equinox is the Eclipse component model
Based on OSGi R4 specification

Standard Java lacks an explicit notion of components

Components == Bundles == Plug-in
Versioned

Defined declaratively

Dynamically loadable/unloadable

Support dynamic update and install

Explicitly define 
Dependencies

Runtime visibility

Interactions (extension points/extensions) Eclipse RCP
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The typical RCP Application

Rich user experience 

Platform independent

Component model

Integrated update mechanism

Extensible

Typically (though not necessarily) a client for some backend 
service

Application Server
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Example: GIS

http://udig.refractions.net/confluence/display/UDIG/Homehttp://udig.refractions.net/confluence/display/UDIG/Home
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Example: ForeFlight

Displays critical 
information 
graphically and 
prominently 

Displays alerts 
when conditions are 
near or exceeding 
the user's preferred 
limits

Connects via the 
web to weather and 
information services 

Multiple ergonomic 
views of the weather 
that affects the 
go/no-go flight 
decision

http://www.foreflight.com/http://www.foreflight.com/
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Example: Lotus Notes “Hannover”
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Example: RSS Solutions
Advanced planning and scheduling (APS) solutions

http://www.eclipse.org/community/casestudies/RSSfinal.pdfhttp://www.eclipse.org/community/casestudies/RSSfinal.pdf
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Example: Maestro – NASA Space Mission 
Management

http://www.eclipse.org/community/casestudies/NASAfinal.pdfhttp://www.eclipse.org/community/casestudies/NASAfinal.pdf
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Spring Backends for Eclipse RCP
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Spring-based Backends

Spring is great for implementing the backend:
Dependency injection for the implementation

AOP for cross-cutting and interceptor-based features

Easy transaction handling

Easy integration of other technology like O/R mapping, security,
and so on…

It is a natural choice to implement the backend using Spring
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Pure RCP Client for the Spring Backend

Client: Pure RCP

Server: Pure Spring

Ways to communicate, for example:
Server provides RESTful/SOAP services, client consumes via HTTP

Server provides services via RMI, client consumes via RMI

Application Server
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Evaluation

Unrestricted usage of Spring on the server

Unrestricted usage of RCP on the client
Including additional features like data binding support, BIRT, …

Simple communication protocol (which is good)
But difficult for sophisticated remote interfaces

Different deployment and programming models
(OSGi bundles on the client, typical WAR file on the server)

Good for highly decoupled systems

Difficult for more integrated systems
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Eclipse RCP + Spring on Client and Server
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The Spring-OSGi bridge

Spring-OSGi is an additional Spring project

Allows to use Spring in OSGi applications
Per-Bundle application context definition

Application context initialization at bundle activation

New <osgi:…> namespace:
Spring-Beans as OSGi-Services and vice versa

Dynamic behavior of OSGi via proxies

Inter-bundle dependency injection
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Spring and Equinox combined

Easy to use

But it is just the beginning, the 
base infrastructure

The interplay with the Spring 
libraries need to be investigated 
in the future

Classloading could cause 
problems with third-party libraries 
that are used by Spring

Detailed information: 
http://www.springframework.org/
osgi/
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RCP + Spring on the Client

Client: Eclipse RCP + Spring/OSGi

Server: Pure Spring

Uses Spring/Remoting for remote communication
With all the possible variations (RMI, HTTPInvoker, Hessian, 
Burlap, etc.)

Application Server
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Evaluation

Unrestricted usage of Spring on the client and the server

Unrestricted usage of RCP on the client

Easy remote communication via Spring/Remoting on both sides

Still different deployment and programming models
(OSGi bundles on the client, typical WAR file on the server)

Although most likely classes are shared between client and server
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OSGi and Spring everywhere
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Eclipse Rich Server Platform (RSP)
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Server-side Eclipse

Why use the Equinox component technology only on the client 
side?

Component model

Update mechanism

Extensibility

All interesting for server-side applications as well
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Server-side Equinox/OSGi is well accepted…

WAS 6.1

Adobe Version Cue

Apache Harmony

Eclipse Rich AJAX Platform

…
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Middle-tiers on Equinox

Equinox can be used to implement middle-tiers
Same component model on both sides

Same extensibility for both sides

Client and server could share the same components

Integration with web-/app-servers possible

Application Server

Rich Client
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Example: Remoting for POJOs

Client Dispatcher-
Servlet

HTTP-
Exporter

HTTP-
Exporter

HTTP-
Exporter

POJO-
Service

POJO-
Service

POJO-
Service

Proxy/
Bridge-
Servlet

HTTP-
Proxy

HTTP-
Proxy

HTTP-
Proxy

ServicesSpringEclipseSpringRich-Client

Client
JVM, Eclipse Rich Client Platform

Server
JVM, Servlet-Container, Equinox OSGi Runtime
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Equinox-based web apps

Equinox can run inside a web app or the web-app can run on top 
of Equinox

Web-app can be componentized

Web-app can be designed and implemented for extensibility 
(Extension-Points)
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More Spring on the RCP-based Client
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More Spring on the Rich Client

How can we benefit from Spring on the client aside from 
Spring/Remoting?

Dependency injection and all other technology abstractions 
usable as well

Just straight forward using Spring/OSGi

How to incorporate this with the Extension-Registry?
For example, inject dependencies into views and editors?
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The typical Extension Definition

We define a view via an extension

The view itself is created by the workbench via the extension 
registry on demand

<extension point="org.eclipse.ui.views">
<view

name="My View"
class="org.eclipse.example.rcpspring.MyView"
id="org.eclipse.example.rcpspring.view">

</view>
</extension>
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Defining the View via Spring

Instead we would like to inject dependencies into the view

Therefore we define the view “bean” within the Spring context

<bean id="injectedView“
class="org.eclipse.example.rcpspring.MyInjectedView">

<property name="businessService“
ref="businessService"/>

</bean>
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Adapt the Extension Definition

Instead of the view directly we declare a factory in the extension 
definition

<extension point="org.eclipse.ui.views">
<view

name="My Injected View"
class="org.eclipse.example.rcpspring.

MyInjectedViewFactory"
id="org.eclipse.example.rcpspring.injectedview">

</view>
</extension>
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Creating an Extension Factory

The Extension-Registry now creates the factory instead of the view 
and calls setInitializationData(..) and create()

public class MyInjectedViewFactory implements
IExecutableExtensionFactory, IExecutableExtension {

public Object create() throws ... {
return this.view;}

public void setInitializationData(..) throws ... {
this.view = (MyInjectedView)

Activator.getAppContext().getBean("injectedView");
this.view.setInitializationData(..);

}

...
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Side Note: Extension-Registry vs. DI

Extension-Registry:
Designed to open-up specific parts of a component for extension

Scalable through declarative metadata

Dependency Injection:
Designed to de-couple classes

No metadata, not designed for scalability
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Conclusions
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Conclusion

A big step forward:
A homogeneous programming and deployment model through the 
usage of Equinox/OSGi and Spring for Client and Server
Eclipse RCP as UI framework for the rich client

Component model for client and server (through OSGi
component model and Spring dependency injection)

Extensibility for client and server (through Extension-Registry)

Technology abstractions for client and server (through Spring)

What else do we need?   ;-)
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Thank you for your attention!

Questions welcome !!!

Special thanks to Jeff McAffer for feedback and material

Martin Lippert

lippert@acm.org
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Recommended RCP Reading

Eclipse Rich Client Platform
By Jeff McAffer and Jean-Michel Lemieux

Addison-Wesley Professional 

ISBN: 0321334612

SWT : The Standard Widget Toolkit, Volume 1 
By Steve Northover, Mike Wilson

Addison-Wesley Professional

ISBN: 0321256638 

Contributing to Eclipse: Principles, Patterns, and Plugins
By Erich Gamma, Kent Beck

Addison-Wesley Professional

ISBN: 0321205758 


