

Spring and Eclipse RCP

Martin Lippert akquinet agile GmbH

lippert@acm.org

Equinox Incubator Committer

Agenda

- What is the Eclipse Rich Client Platform?
- Spring and Eclipse RCP
 - Spring Backends for Eclipse RCP
 - Eclipse RCP + Spring on Client and Server
 - OSGi and Spring everywhere
 - More Spring on the Client
- Conclusions

What is Eclipse Rich Client Platform?

Eclipse is a Composition of Components

Eclipse SDK/Java IDE

Generic IDE Components

Eclipse IDE

Eclipse Rich Client Platform

Why Use Eclipse Rich Client Platform?

- A consistent and native look and feel across applications and features
- Provides common application services
 - Native look and feel
 - Window management
 - Standardized component model (Equinox)
 - Pervasive extensibility Extension registry
 - Update Manager
 - Help system
- First-class development tools
- Middleware for building rich client applications!
 - Allows programmers to focus on core application not the plumbing
 - Don't reinvent the wheel

Equinox

- Equinox is the Eclipse component model
 - Based on OSGi R4 specification
 - Standard Java lacks an explicit notion of components
- Components == Bundles == Plug-in
 - Versioned
 - Defined declaratively
 - Dynamically loadable/unloadable
 - Support dynamic update and install
- Explicitly define
 - Dependencies
 - Runtime visibility
 - Interactions (extension points/extensions)

The typical RCP Application

- Rich user experience
- Platform independent
- Component model
- Integrated update mechanism
- Extensible
- Typically (though not necessarily) a client for some backend service

Example: GIS

Example: ForeFlight

- Displays critical information graphically and prominently
- Displays alerts when conditions are near or exceeding the user's preferred limits
- Connects via the web to weather and information services
- Multiple ergonomic views of the weather that affects the go/no-go flight decision

http://www.foreflight.com/

Example: Lotus Notes "Hannover"

Copyright © 200

Online *

Example: RSS Solutions

Advanced planning and scheduling (APS) solutions

Example: Maestro – NASA Space Mission Management

Spring Backends for Eclipse RCP

Spring-based Backends

- Spring is great for implementing the backend:
 - Dependency injection for the implementation
 - AOP for cross-cutting and interceptor-based features
 - Easy transaction handling
 - Easy integration of other technology like O/R mapping, security, and so on...
- It is a natural choice to implement the backend using Spring

Pure RCP Client for the Spring Backend

Client: Pure RCP

Server: Pure Spring

- Ways to communicate, for example:
 - Server provides RESTful/SOAP services, client consumes via HTTP
 - Server provides services via RMI, client consumes via RMI

Evaluation

- Unrestricted usage of Spring on the server
- Unrestricted usage of RCP on the client
 - Including additional features like data binding support, BIRT, ...
- Simple communication protocol (which is good)
 - But difficult for sophisticated remote interfaces
- Different deployment and programming models (OSGi bundles on the client, typical WAR file on the server)
 - Good for highly decoupled systems
 - Difficult for more integrated systems

Eclipse RCP + Spring on Client and Server

The Spring-OSGi bridge

- Spring-OSGi is an additional Spring project
- Allows to use Spring in OSGi applications
 - Per-Bundle application context definition
 - Application context initialization at bundle activation
- New <osgi:...> namespace:
 - Spring-Beans as OSGi-Services and vice versa
 - Dynamic behavior of OSGi via proxies
 - Inter-bundle dependency injection

Spring and Equinox combined

- Easy to use
- But it is just the beginning, the base infrastructure
- The interplay with the Spring libraries need to be investigated in the future
- Classloading could cause problems with third-party libraries that are used by Spring
- Detailed information:
 http://www.springframework.org/osgi/

RCP + Spring on the Client

- Client: Eclipse RCP + Spring/OSGi
- Server: Pure Spring
- Uses Spring/Remoting for remote communication
 - With all the possible variations (RMI, HTTPInvoker, Hessian, Burlap, etc.)

Evaluation

- Unrestricted usage of Spring on the client and the server
- Unrestricted usage of RCP on the client
- Easy remote communication via Spring/Remoting on both sides
- Still different deployment and programming models (OSGi bundles on the client, typical WAR file on the server)
 - Although most likely classes are shared between client and server

OSGi and Spring everywhere

Eclipse Rich Server Platform (RSP)

Server-side Eclipse

- Why use the Equinox component technology only on the client side?
- Component model
- Update mechanism
- Extensibility
- All interesting for server-side applications as well

Server-side Equinox/OSGi is well accepted...

- WAS 6.1
- Adobe Version Cue
- Apache Harmony
- Eclipse Rich AJAX Platform
- ...

Middle-tiers on Equinox

- Equinox can be used to implement middle-tiers
 - Same component model on both sides
 - Same extensibility for both sides
- Client and server could share the same components
- Integration with web-/app-servers possible

Example: Remoting for POJOs

Equinox-based web apps

- Equinox can run inside a web app or the web-app can run on top of Equinox
- Web-app can be componentized
- Web-app can be designed and implemented for extensibility (Extension-Points)

More Spring on the RCP-based Client

More Spring on the Rich Client

- How can we benefit from Spring on the client aside from Spring/Remoting?
- Dependency injection and all other technology abstractions usable as well
 - Just straight forward using Spring/OSGi
- How to incorporate this with the Extension-Registry?
 - For example, inject dependencies into views and editors?

The typical Extension Definition

- We define a view via an extension
- The view itself is created by the workbench via the extension registry on demand

Defining the View via Spring

- Instead we would like to inject dependencies into the view
- Therefore we define the view "bean" within the Spring context

Adapt the Extension Definition

 Instead of the view directly we declare a factory in the extension definition

Creating an Extension Factory

■ The Extension-Registry now creates the factory instead of the view and calls setInitializationData(..) and create()

```
public class MyInjectedViewFactory implements
 IExecutableExtensionFactory, IExecutableExtension {
public Object create() throws ... {
   return this.view; }
 public void setInitializationData(..) throws ... {
   this.view = (MyInjectedView)
     Activator.getAppContext().getBean("injectedView");
   this.view.setInitializationData(..);
```

. . .

Side Note: Extension-Registry vs. DI

- Extension-Registry:
 - Designed to open-up specific parts of a component for extension
 - Scalable through declarative metadata
- Dependency Injection:
 - Designed to de-couple classes
 - No metadata, not designed for scalability

Conclusion

- A big step forward:
 - A homogeneous programming and deployment model through the usage of Equinox/OSGi and Spring for Client and Server
 - Eclipse RCP as UI framework for the rich client
- Component model for client and server (through OSGi component model and Spring dependency injection)
- Extensibility for client and server (through Extension-Registry)
- Technology abstractions for client and server (through Spring)
- What else do we need? ;-)

Thank you for your attention!

• Questions welcome !!!

Special thanks to Jeff McAffer for feedback and material

Martin Lippert

lippert@acm.org

Recommended RCP Reading

- Eclipse Rich Client Platform
 - By Jeff McAffer and Jean-Michel Lemieux
 - Addison-Wesley Professional
 - ISBN: 0321334612
- SWT : The Standard Widget Toolkit, Volume 1
 - By Steve Northover, Mike Wilson
 - Addison-Wesley Professional
 - ISBN: 0321256638
- Contributing to Eclipse: Principles, Patterns, and Plugins
 - By Erich Gamma, Kent Beck
 - Addison-Wesley Professional
 - ISBN: 0321205758

