
Tooling for the JavaScript era

Andy Clement, Staff Engineer
Martin Lippert, Staff Engineer

Andrew Eisenberg, Senior Member of Technical Staff

© 2012 SpringOne 2GX. All rights reserved. Do not distribute without permission.

•  Andy Clement
–  Staff Engineer, R&D
–  Lead, language lab

•  Martin Lippert
–  Staff Engineer, R&D
–  Lead, development tools

•  Andrew Eisenberg
–  Senior Member of Technical Staff, R&D
–  Lead, Groovy-Eclipse

Speaker Introduction

2

•  This session may contain product features that are
currently under development.

•  This session/overview of the new technology represents
no commitment from SpringSource/VMware to deliver
these features in any generally available product.

•  Features are subject to change, and must not be
included in contracts, purchase orders, or sales
agreements of any kind.

•  Technical feasibility and market demand will affect final
delivery.

•  Pricing and packaging for any new technologies or
features discussed or presented have not been
determined

Disclaimer

3

•  The basic idea
•  Observations and assumptions
•  Our prototypes
•  Where are we heading?

Agenda

4

•  Where are IDE and development tools in general heading
towards?
–  Big integrated desktop IDE?
–  Lightweight editors?
–  Browser-based IDEs?
–  Does Cloud have an impact?

•  Why can Google search the web in 10ms, but it takes
1000ms or more for my IDE to lookup a type hierarchy

The basic idea

5

•  Lets do things differently:
–  Browser-based
–  Lightweight instead of fully integrated IDEs
–  Maybe cloud hosted
–  Innovate…

•  And see what comes out of that…

Exploring…

6

•  Non-coding work:
–  Talk to people
–  Ask questions
–  Scribble

•  Coding work:
–  Prototyping
–  Shipping early

Exploration

7

•  Increasing in popularity
•  Not only web UI gadgets anymore

–  Serious large-scale apps in JavaScript
–  Server-side JS (node.js)

•  Other dialects interesting: CoffeeScript, TypeScript
–  JS is first priority

•  Fits nicely into our scope for browser-based tooling

JavaScript

8

•  Lightweight beats heavyweight
–  Simple editors still the most popular JS tool
–  Don’t want the uber tool

•  Speed is essential (startup, coding, typing)
–  No acceptance for long startups, delay in typing

Results and assumptions #1

9

•  Real code comprehension missed a lot
–  People would love to get good content-assist and code-

completion
•  Aware of module definitions (AMD, RequireJS, …)
•  Aware of frameworks

–  Fast/accurate navigation
–  Early error indication (more than just JSLint)

Results and assumptions #2

10

•  Debugging is great, but good integration with editing is
missing
–  Workarounds exist (for Chrome Dev Tools, for example)
–  Better integration would be good

•  Connecting with existing popular tools

Results and assumptions #3

11

•  A cloud-hosted workspace?
–  Need to work offline
–  Need to use other tools on my machine on the files

•  A cloud-hosted tool?
–  Collaborative editing
–  Social coding
–  Zero installation – always up-to-date
–  Technically using cloud (aka unlimited) resources

Results and assumptions #4

12

Let’s prototype

13

•  Build some basic tools with key features that meet user
need

•  Make them available
•  Collect feedback, adjust direction as necessary

Prototyping

14

•  Build:
–  Editing tool with server side ‘cloud’ workspace

•  browser based editing experience
–  Good content assist
–  Reuse tech where appropriate
–  No preference on backend technology

Prototype #1

15

 “Browser-based open tool integration platform”

•  Eclipse Project
•  Client/Server tool
•  Orion is a tools platform
•  Not an IDE in a browser tab

Prototype #1: Eclipse Orion

16

•  An Eclipse Orion deployed internally in VMware
•  With extra capabilities:

–  Better content assist than real orion
–  Basic command line console included for running some

server side commands
•  e.g. vmc push to Cloud Foundry

•  What happened?

Prototype #1: Features

17

•  Very little interest
–  Developers are busy people
–  The benefits of basic content assist did not outweigh cost of

giving up their environment
–  Developers happier with code on their machine
–  Even just to ‘try it out’ they had to migrate some code over

to the cloud workspace

What happened?

18

•  Learn from our own experiences extending Orion
–  What do we need?

•  Create a tool that would support local or remote
workspace
–  Continues to be a web app, just with a local server
–  Can optionally have the server deployed remotely
–  Keep a low adoption barrier

Prototype #2

19

•  Could use Orion, but:
–  UI for Orion not quite as snappy/fast as we wanted
–  Server is a bit heavy
–  Orion offered more facilities than we wanted

•  Another Git UI
•  Multi user setup

Prototype #2

20

•  Reuse Eclipse Orion Code Editor
•  Implement alternative lightweight backend
•  Focus on:

–  Speed (startup and usage)
–  Code awareness:

•  Static code analysis
•  Content assist

– Module system comprehension

Prototype #2

21

•  Eclipse Orion
–  Just the editor: familiar to Eclipse users

•  Dojo for now
•  Inferencing engine relying on

–  Recoverable JS parsing: esprima
–  Dependency analysis code

Scripted Architecture: client side

22

•  Small Node.js server
–  Serving the client html/js
–  Serving requests from the client

•  ‘give me the contents of file X’
•  ‘search for this string’
•  ‘tell me the dependencies of this JS file’

•  Restarted on each editor launch
–  Likely to eventually be a long running process

Scripted Architecture: server side

23

•  Much more positive feedback internally
•  Decided to open source to access a wider audience
•  Now on github:

https://github.com/scripted-editor/scripted

Scripted

24

•  Fast – startup and during use
•  Code awareness

–  JSLint early error indication
–  Module system awareness, transitive dependency analysis
–  JSDoc comprehension

•  Basic editor configuration
•  Basic navigator
•  Side-panel

Scripted: Features

25

Scripted Demo

26

•  Even more code awareness
–  Even better content assist
–  More module systems
–  Maybe always ON content assist…

•  Plugin model
–  Extend it with JavaScript

Scripted – near term goals

27

•  More side-panel contents
–  More panes (documentation, search results)
–  Automated management of panes by the editor

•  UI overhaul
–  we’re smarter than we were when we started !

Scripted – near term goals

28

•  Debugging
–  Not reinventing CDT
–  Helping developers in callback hell
–  Step into server from client

•  Selected tool integration
–  But not replacing command line tools, e.g. Git

•  Even further out
–  Other languages (Java)

Scripted – longer term goals

29

Some images from the drawing board…

30

Original overlays instead of side panel

31

Discarded
•  Covering the user

code just too irritating

Other side panel entries

32

Will be implementing
•  Documentation pane
•  Search results pane
•  Panes pinnable

•  More panes to follow

Navigator filters

33

Still exploring
•  Filters try to ensure

navigator content
relevant

•  Tag based filtering with
auto-tagging

Scrolling side panel

34

Still exploring
•  Confusing ‘scroll’ story

‘Overview’ for side panel entries

35

Unlikely to pursue
•  Overview doesn’t

communicate enough
information

•  Still somewhat fiddly
scrolling story

Accordion style side panel

36

Still exploring
•  How lightweight can the

collapsed entries be?
•  Easier scroll story

Smart global search box

37

Likely to implement
•  One place to search for

anything

Git integration

38

Likely to implement
•  Initially just a browsing

tool for comments/
commit changes

•  Timeline feature (at the
bottom) still work in
progress

•  Having a reaction to some of those images?
•  Let us know!

https://groups.google.com/forum/#!forum/scripted-dev

https://issuetracker.springsource.com/browse/scripted

Feedback welcome

39

•  The basic idea
•  Observations and assumptions
•  The prototypes

–  The Scripted Code Editor
•  Where are we heading?

Summary

40

•  Google Group: scripted-dev
 https://groups.google.com/forum/#!forum/scripted-dev

•  Project page:
https://github.com/scripted-editor/scripted

Any questions?

41

Andy Clement
aclement@vmware.com
@andy_clement

Martin Lippert
mlippert@vmware.com
@martinlippert

Andrew Eisenberg
aeisenberg@vmware.com
@werdnagreb

The End

42

