Tutorial:
Spring and OSGi Combined
with Spring Dynamic Modules

Martin Lippert, aquinet it-agile GmbH
BJ Hargrave, IBM & CTO, OSGi Alliance

(Adrian Colyer, CTO, SpringSource)

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

P

A few words about myself...

* Martin Lippert

¢ Senior IT consultant at akquinet it-agile
GmbH, Germany

L 2
* Focus
+ Agile software development
+ Refactoring
+ Eclipse technology

* Equinox incubator committer

2 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Agenda

e What is OSGi?

e \What is Spring Dynamic Modules?
e Spring Dynamic Modules in Action
e Server-Side Applications

e RCP Applications

e Summary

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

OSG — What?
* OSGI™:

¢+ ,,A dynamic module system for Java‘

%fk&?(?

4 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

* ... a module system for Java that allows the definition
of ...
¢+ Modules (called ,bundles®),
+ Visibility of the bundle contents (public-API vs. private-API)
+ Dependencies between modules

+ Versions of modules

N
[Bundie-SymholicName: de.example.orderservice [Bundte-Symbothame: de.example.customerservice

ExportPackage: de.example.customerservice

/

-] META-INF
=| MANIFEST.MF

-] META-INF
=| MANIFEST.MF
- de.example.orderservice —-——)>

51+ de.example.orderserviceinternal

5 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

de.example.customerservice.internal

OSGiis ...

e ... dynamic

+ Bundles can be installed, started, stopped, uninstalled and
updated at runtime

[‘l__ll;;m.-lm |

=] MANIFEST MF

deexample.orderservice - +
de example orderservice intemal

V1.0.0

B] META-INF
| MAMNIFEST.MF

é—m desxamplecustomersaryica. intarnal

V1.1.0

E—E- deaxamplecustomersardca intarmal

6 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

P SIS

OSGiis ...

. service oriented

+ Bundles can publish services (dynamically)
+ Bundles can find and bind to services through a service registry
+ The runtime allows services to appear and disappear at runtime

=) MANIFEST.MF
desxampleorderservice

META-IMNF
de.example.orderserviceintemal

B] META-INF
=| MANIFEST.MF

H deexample.customerserviceintemal

OsGi
Service

ey Registryg /,'

7 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJH_

What does OSGi look like? (Low Level)

Identification
Bundle-SymbolicName: org.eclipse.equinox.registry
Bundle-Version: 3.2.100.v20060918
Bundle-Name: Eclipse Extension Registry
Bundle-Vendor: Eclipse.org

Classpath

Bundle-ClassPath: ., someOtherJar.jar

Lifecycle
Bundle-Activator: org.eclipse.core.internal.registry.osgi.Activator

Dependencies
Import-Package: javax.xml.parsers,
org.xml.sax,
org.osgi.framework;version=1.3
Require-Bundle: org.eclipse.equinox.common;bundle-version="[3.2.0,4.0.0)"
Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0,J2SE-1.3

Exports

Export-Package: org.eclipse.equinox.registry

8 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

— _@p Se

Implementations

* Open source implementations
+ Eclipse Equinox (http://www.eclipse.org/equinox/)
+ Apache Felix (http://cwiki.apache.org/FELIX/index.html)
+ Knopflerfish (http://www.knopflerfish.org/)

* ProSyst mBedded Server Equinox Edition
(http://www.prosyst.com/products/osgi_se equi_ed.html)

« Commercial implementations
¢ ProSyst (http://www.prosyst.com/)
+ Knopflerfish Pro (http://www.gatespacetelematics.com/)

(not necessarily complete)

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

10

What is Spring Dynamic Modules?

* Project Objectives

* Introduction to key Spring concepts
* Bundles and module contexts

* Application design

* The extender pattern

* Who's using it?

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Spring Dynamic Modules is...

e A open source projectin -

Spring Dynamic Modules for 0SGi(tm) Service Platforms

the Spring portfolio

Introduction

I H The Spring Dynamic Modules for OSGi(tm) Service Platforms project makes it easy to build Spring applications

- e y p rl n g O u rce that run in an OSGi framework. A Spring application written in this way provides better separation of modules,
the ability to dynamically add, remowve, and update modules in a running system, the ability to deploy multiple
versions of a moduie simuitaneousiy (and have ciients automaticaiiy bind to the appropriate one}, and a dynamic

— committers from BEA and = =™

050G/ is a registered trademark of the O5Gi Alliance. Project name is used pending approval from the O5GI
O I e Alliance.

Downloads

— many non_Code GA release - 1.0.1

* Download
* Reference Documentation

contributions from the - Faq

* Known Issues
+ Javadocs

community and from the
OSGi EEG and CPEG

http://www.springframework.org/osgi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

—8 P SIE

Project Objectives

* Bring the benefits of OSGi:

+ modularity
¢ versioning
+ lifecycle support

* To enterprise application development

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Design considerations (raw OSGi)

¢ Platform dynamics
— services may come and go at any time
— ServiceTracker

e Asynchronous activation
— service dependency management

e Testing
e Concurrency and thread management

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Project Objectives

e The simplicity and power of Spring...
— with the dynamic module system of OSGi

e Modules need instantiating, configuring, decorating,
assembling, ...

e Need an easy way to manage service references
between modules

e Easy unit and integration testing

Bring the benefits of OSGi to enterprise applications

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Portable Service Abstractions

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

— _@p Se

The Heart of Spring

* Lightweight container
— Full stack, simple object based application development

* Works in any environment
— web-app, €jb, integration test, standalone

* Provides...

— a powerful object factory that manages the instantiation,
configuration, decoration and assembly of business objects

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

— _@p Se

Spring-based development

 View application as a set of components
+ with clear layering

« Each component is a simple object
+ Testable in isolation

« Container manages component configuration and
assembly

 Container decorates your components at runtime

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

_@9 3 Typical application layering

presentation Other remote Web interface
layer interfaces (MVC) N
layer Service implementations = Domain

objects
data access —

layer e

DAO implementations

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Har_gi

@p 3 Typical application layering

Other remote Web interface
interfaces (MVC) N
Service implementations “Tl Domain
‘ objects
/)"
DAO implementations

Lj
Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adri:|n Co

Spring Framework

« Dependency injection

* Integration with persistence technologies (JDBC,
Hibernate)

* Web application support Spring MVC, JSF and Struts

* Enterprise service abstractions
¢ Transactions
+ Messaging

* Aspect Oriented Programming support

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Without dependency injection

public class TransferServicelmpl implements TransferService {
private AccountRepository accountRepository;

public TransferServicelmpl() {

DataSource ds = (DataSource)
ctx.lookup(“myAppserverDS”);

accountRepository = new JdbcAccountRepository(ds);

| ’ \

Tied to Jdbc implementation
Tied to application server JNDI
Hard to test. Hard to reuse

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

D

Dependency Injection

public class JdbcAccountRepository implements
AccountRepository {

} \ Implements a service interface

public class TransferServicelmpl implements TransferService {
private final AccountRepository accountRepository;

public TransferServicelmpl(AccountRepository ar) {
this.accountRepository = ar;
} |

Depends on service interface;
conceals complexity of implementation;
allows for swapping out implementation

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Spring Blueprint

<beans>

<bean id="transferService” class="app.impl.TransferServicelmpl!”>
<constructor-arg ref="accountRepository” />
</bean>

<bean id="accountRepository” class="app.impl.JdbcAccountRepository”>
<constructor-arg ref="dataSource” />
</bean>

<bean id=“dataSource” class="com.oracle.jdbc.pool.OracleDataSource”>
<property name="URL” value="jdbc:oracle:thin:@localhost:1521:BANK” />
<property name="user’ value="moneytransfer-app” />

</bean>

</beans>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Bundles and Module Contexts

« OSGi bundle <==> Spring Application Context

+ we call it a module context
» Module context created when bundle is started

* destroyed when bundle is stopped

» Module components <==> Spring beans
* instantiated, configured, decorated, assembled by Spring

« Components can be imported / exported from OSGi
service reqistry

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

P

Application Design

e Application becomes a set of co-operating bundles
— vertical decomposition first
— then horizontal

e Communication via service registry

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

|

(1

0

Application wiring

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

ecCliPSE

Spring Dynamic Modules
. Spring Bean

Application contexts

H

u

n

1

I

m

=

D

=

p

I

0

¥

m

=

n

! Java Virtual Maching
Spring Extender Bundle "Spring-powered” application bundles

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ H

The Extender pattern

* “The OSGi Extender Model”
+ Peter Kriens, Feb. 2007

*

* [A]synchronous bundle listener
¢+ listen to install, update, uninstall events
¢+ inspect bundle content
+ Take appropriate action on behalf of the bundle

« Spring Dynamic Modules extender bundle:
¢ org.springframework.osgi.bundles.extender
+ must be installed and active for module contexts to be created

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Spring Dynamic Modules Users

° OraCIe Google Groups

+ building next generation &,
middleware platform on
OSGi and Spring DM

° B E A & Discussions 7 of 3581 messages view all »
4z The semantics of osgi:reference and other topics....
* WebLogic Event Server 2.0 < [Re: Roadmap for Spring-Osgi V1 (ncted n Spring 2.1) 2
built on Spring Dynamic okl carcinity ot saiffed report messae
Modules e o

By Alin Dreghiciu - Mar 7 - 5 authors - 6 replies

I Support for Declarative Services?
° Over 1 OOO SUbscrIberS On By Hal Hildebrand - Mar 7 - 2 authors - 3 replies
1k . Resolving framewaork issues / missing bundles
ma I I I n g I ISt By Richard S. Hall - Mar 7 - 2 authors - 2 replies
Register service on demand
By Nico - Mar 7 - 2 authors - 4 replies

' Members 1025 members view all »

http://groups.google.com/group/spring-osgi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Harg

30

Agenda

e What is Spring Dynamic Modules?

e Spring Dynamic Modules in Action
e Server-side Applications

e RCP Applications

e Summary

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Spring Dynamic Modules in Action

* Creating a Spring-powered bundle
* Importing and exporting services

* The whiteboard pattern

* Dynamics

 Startup and shutdown

31 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Spring-powered bundles

e Spring module context (app context) per bundle
(module)

— created automatically for you by Spring extender bundle
— no need to depend on any OSGi APls

e META-INF/spring/*.xml
e Or Spring-Context header in MANIFEST.MF

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

i poE

Spring-powered bundles
M$ Plug-ins | T2 Hierarchy| = O

u|E| |

v I:“I.- Printing Service
v & src
k4 EE Ccomspringsource.nsgi.printing
m Printingﬂewicejava

- T-—E- Crrimm Dnu.n:lr.:lﬂl Drint': rrrrrr
SR

"' - W IIII_r!_I'I'I'l.!_

[
k4 EE COMSPringsource.nsgi.print

k E] PrintService.java
E PrintService

v EE Ccom.springsource.nsgi.printinternal — 1 PrOteCted
v [printServicelmpl java |mp|ementat|ons
v C) PrintServicelmpl
@ destroy()
@ initl)
2 printiString)

_— Published interfaces

— Spring configuration
files

v 25 META-INF
k4 [f:s spring
|f| module-context.xml

MANIFEST.MF

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

D

Demo/Exercise 1: Spring-powered bundle

« Step 1:
+ Implement a bundle including a bundle activator
+ Try out your bundle via the console

« Step 2:
¢ Implement a POJO with a method “hello” and a method
“‘goodbye”
+ Create a spring context and define your POJO as a bean
+ Define your methods as init- and destroy-methods
* Try out your bundle via the console using Spring DM

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

D

Getting log output

» Spring uses Jakarta Commons Logging

« Commons logging doesn't behave well under OSGi
+ Use SLF4J binding instead
= Simple Logging Facade for Java ()
* Bundles:
¢+ jcl104.over.slf4j (static binding of jcl to slif4j)
¢+ slf4j.api (the slIf4j API)
*+ slf4j.log4j12 (implementation of slf4j over log4))

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

D

Getting log output

0sgi> 1log4j:WARN No appenders could be found for logger
(org.springframework.util.ClassUtils).

log4j:WARN Please 1nitialize the log4j system properly.

* Where to put log4j.properties?
+ which bundle is it that looks for this file?
+ how do we make it visible to that bundle?

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Getting log output

» Use a Fragment Bundle

* “Fragments are bundles that are attached to a host bundle by
the Framework.” - OSGi Core Specification, 3.14

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Logging Configuration Fragment
Bundle-SymbolicName: com.springsource.logging.config
Bundle-Version: 1.0.0

Bundle-Vendor: SpringSource

Bundle-RequiredExecutionEnvironment: J2SE-1.5

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Demo/Exercise 2: log4j configuration

 Create a fragment for the log4j configuration
 Put the log4) configuration into this bundle

* Attach the fragment to the log4j host bundle
* Try it out!

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Spring Dynamic Modules in Action

* Creating a Spring-powered bundle
* Importing and exporting services
* The whiteboard pattern

* Dynamics

 Startup and shutdown

39 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Services

e Your application is constructed as a set of bundles,
each with their own module context

e How do we reference beans in other modules?

— use the OSGi Service Registry
e advertise public services
e import references to external services

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Beans and services

[Bundle A

‘App Context A

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,_

(Bundle B
_[App Context B
— T
_..:' ‘:
.-—-'-'-'-_--—---—-P!.‘ ":

P SIS

Service import/export overview
Exporting context:

<bean id="printService"

class="com.springsource.osgi.print.internal.PrintServiceImpl"
init-method="init"
destroy-method="destroy"/>

<osgl:service ref="printService"

interface="com.springsource.osgi.print.PrintService" />

Importing context:

<bean id="printClient"
class="com.springsource.osgi.print.client.Client"
init-method="init">
<property name="printService" ref="printService"/>
</bean>

<osgi:reference id="printService"

interface="com.springsource.osgi.print.PrintService" />

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Harg

Exporting a service

<bean id="printService"
class="com.springsource.osgi.print.internal.PrintServiceImpl"
init-method="init"
destroy-method="destroy"/>

<osgl:service ref="printService"
interface="com.springsource.osgi.print.PrintService"/>

e any Spring bean can be exported as OSGi service
e offers access to the ServiceRegistration object

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

7y

::'

;)

Importing a service

<bean id="printClient"
class="com.springsource.osgi.print.client.Client"
init-method="init">

<property name="printService" ref="printService"/>
</bean>

<osgi:reference id="printService"

interface="com.springsource.osgi.print.PrintService" />

e |ocates the best OSGi service that matches the
description

e handles the service dynamics internally

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Demo/Exercise 3: OSGi services

« Step 1:
+ Define an interface for your bean in a separate package
¢ Export only this interface

« Step 2:
+ Export your bean as an OSGi service using the interface
« Step 3:

+ Take a look at the available services at the console

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

P SIS

Demo/Exercise 3: OSGi services

« Step 4.
+ Create another bundle including a spring context

+ Define a bean that requires an instance of your service
» Define the property
» Import the OSGi service as a bean

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

D

Controlling Service Exporting

« Which interface(s) should the service be registered
under?
+ a single interface, use the interface attribute
+ multiple interfaces, use the nested interfaces element

¢ Or... have Spring Dynamic Modules calculated the exported
interface set for you automatically.

<osgi:service id="printService" auto-export="interfaces"/>

= auto-export values are interfaces, class-hierarchy, or all-classes.

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Controlling Service Exporting

» Service always has service property
+ org.springframework.osgi.bean.name
+ (set to bean name)

« Specify additional service properties explicitly if needed

<osgl:service ref="printService"
interface="com.springsource.osgi.print.PrintService">
<osgi:service-properties>
<entry key="aKey" value="someValue"/>
<entry key="aKey" value-ref="someBeanName"/>
</osgi:service-properties>

</osgi:service>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Controlling Service Importing

 Use filter expressions
* RFC 1960: A String representation of LDAP Search Filters

<osgl:reference id="printService"
interface="com.springsource.osgi.print.PrintService"
filter=" (colour=true)"/>

» Special attribute bean-name matches on
org.springframework.osgi.bean.name property
+ condition anded with filter expression if present

 Can specify multiple interfaces using nested interfaces
element.

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Spring Dynamic Modules in Action

* Creating a Spring-powered bundle
* Importing and exporting services

* The whiteboard pattern

* Dynamics

 Startup and shutdown

50 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

51

The Whiteboard Pattern

* “Listeners Considered Harmful: The Whiteboard
Pattern”
+ OSGi Alliance Technical Whitepaper, 2004

*

* Lifecycle issues around listener registration

* Solution: whiteboard
* event source is not registered as a service
+ listeners register as services using well-known interface
¢ event source uses a tracker to track listener services

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Importing a set of services

<bean id="printClient"
class="com.springsource.osgi.print.client.Client"
init-method="init">
<property name="printService" ref="printService"/>
</bean>

<osgi:set id="printService"
interface="com.springsource.osgi.print.PrintService" />

e |ocates all OSGi services that match the description
e handles the service dynamics internally
e See also: <osqi:list... />

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Demo/Exercise 4: whiteboard pattern

« Step 1:
+ Enhance your second bundle to use a set of services

+ Call these services regularly
= E.g. via a thread started in the init method

« Step 2:

+ Split your first bundle into an interface bundle (containing just
the interface) and an implementation bundle

« Step 3:

+ Create a third bundle that registers a different implementation
of the interface as OSGi service

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Spring Dynamic Modules in Action

* Creating a Spring-powered bundle
* Importing and exporting services

* The whiteboard pattern

* Dynamics

 Startup and shutdown

54 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Dealing with dynamics

A service bundle. . Service interface types

exported [with version

nformation]
Export-Package: a.b.c o

private
implementation
packages

"Passive" contribution
Service implementation * types added to type space
locked away * bundles see new version on
resolution after install/refresh

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Dealing with dynamics
A service bundle...

Published services

(OCOOO0O0N. |

Private implementatio "Active" contribution
objects « services published in registry
* bundles see service changes
iImmediately

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Service Dynamics

e \What happens when a service goes away?

— osgi:reference cardinality="0..1"
¢ track replacement and retarget proxy when suitable target found
e ServiceUnavailableException after timeout if invoked

— osgi:reference cardinality="1..1"
e as above, plus

e unregister any exported services that depend on the unsatisfied
reference

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

@9@ £

Cardinality (single reference)

[Bundle

'App Context

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lipper_

|

(1

;j:’

Registration management

<osgi:service id="myService" ref="exposedBean"/>
<bean id="exposedBean" class="...">
<property name="myHelper" ref="helperBean"/>

</bean> 4///,,//”’

«—

<bean id="helperBean" class="...">
<property name="fooService" ref="fooService"/>

<osgi:reference id="fooService" interface="..."/>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Harg

Service Dynamics

e \What happens when a service goes away?

— osgi:set/list cardinality="0..n"
e service is removed from the set
e |terator contract is honored

— osgi:set/list cardinality="1..n"
e as above, plus

e unregister any exported services that depend on the unsatisfied
service reference

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

@9@ £

Cardinality - many

(Bundle

'App Context

Managed collection~

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lipper_

Demo/Exercise 5: Dynamics

* Play with the two implementation bundles via the
console

¢ Starting and stopping the different bundles and see what
happens

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

D

Listening

e You work with a constant reference
— Proxy / Set / List

e Spring Dynamic Modules manages the target backing
service(s) for you

¢ You can optionally listen to bind / unbind events
e You can optionally listen to register / unregister events

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

PSE

Reference listeners

<osgi:reference id="printService"
interface="com.springsource.osgli.print.PrintService">

<osgi:listener bind-method="onBind"
unbind-method="onUnbind">
<beans:bean class="MyCustomListener"/>
</osgi:listener>

</osgi:reference>

class MyCustomListener ({

public void onBind(PrintService service, Map serviceProperties) {...}
public void onBind(FastPrintService service, Map serviceProps) {...}
public void onUnbind(ColorPrintService service, Map props) {...}

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Harg

PSE

Registration listeners

<osgil:service id="printService"
interface="com.springsource.osgli.print.PrintService">

<osgi:registration-listener
registration-method="registered"
unregistration-method="unregistered"
ref="printServicelListener"/>

</osgi:service>

class MyCustomListener {

public void registered(PrintService service, Map serviceProps) {...}

public void unregistered(PrintService service, Map serviceProps) {...}

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Harg

Spring Dynamic Modules in Action

* Creating a Spring-powered bundle
* Importing and exporting services

* The whiteboard pattern

* Dynamics

« Startup and shutdown

66 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

D

Startup

e Context creation
— blocks until all mandatory service references are satisfied

— simply start your bundles and let Spring Dynamic Modules
figure it out

« Control via Spring-Context manifest header directives
— wait-for-dependencies:=[true|false]
— timeout:=[seconds]

- E.Q.

— Spring-Context: *;wait-for-dependencies:=false

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

— _@p Se

Shutdown

* Module contexts disposed when bundle is stopped

« Stopping the extender bundle disposes of all module
contexts created by it

+ First those bundles that do not export any referenced services
(in reverse bundle id order)

+ Cycles broken first by ranking, then by service id

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

69

Agenda

e What is Spring Dynamic Modules?
e Spring Dynamic Modules in Action
e Server-side Applications

e RCP Applications

e Summary

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Server-side Applications

* Options for using OSGi on the server-side
 Enterprise library "gotchas"
 Context class loader management

70 Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

P SIS

Embedded OSGi

[Web Container)
[1 0 Web App 1 [1
Web Web
Servlet Bridge
App App

o) (=) (=) (]

.,

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

OSGi as a server platform

Web apps.

05GI-based

oS

L\

N
-

Web
Gontainer App.

Bundie

—

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

App.
Bundle

—

e ClipPSE

!

Web App |
Serviet Bridge

Nested OSGi

BIENEa

App. App.
Bundle Bundle

Web Tx
Container Mgt.

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Harg

— —

Enterprise Libraries under OSGi

e class and resource-loading problems
— class visibility
— Class.forName
— context class loader

e Good news: Spring 2.5 is OSGi-ready
— modules shipped as bundles
— all class loading behaves correctly under OSGi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

PSE

Example: Class visibility

Import- Package Import-Package

Domain Model

domain Sl
Export-Pk
types, / o
mapping :
A < SessionFactory

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Class visibility solutions

* Dynamic-ImportPackage
+ alast resort, too broad a scope
+ does not affect module resolution
* Equinox Buddy Policy
+ |n Hibernate bundle manifest:
e Eclipse-BuddyPolicy : registered
+ |n domain model bundle manifest:
e Eclipse-RegisterBuddy : org.hibernate
e Import-Package: org.hibernate
« Attach a Fragment Bundle
+ With required Import-Package headers

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

D

Class.forName

e Caches the returned
class in the initiating
class loader

— native, vm-level cache ‘,sforNaEne(...,CCL)
e Can cause class loading TN :

errors
e Prefer

ClassLoader.loadClass

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

D

Context Class Loader

* Heavily used in enterprise Java

« Expected to have visibility of application types +
classpath

» ContextClassLoader is undefined in OSGi!
+ No notion of “context”; No notion of “application”

 Solutions:
+ Eclipse Equinox: Context Finder
+ Spring Dynamic Modules : CCL management

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Context ClassLoader Management

 Context ClassLoader guaranteed to have visibility of
bundle classpath when the module context for a bundle
IS created

 Control CCL on service invocation:
+ client-side (attribute of reference element)
» context-class-loader="client|service-providerjlunmanaged”

+ service-side (attribute of service element)
= context-class-loader="service-providerlunmanaged”

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Web Applications
e OSGi HttpService (Servilet 2.1 - 1998)

— registerServlets and resources under aliases

— programmatic configuration

e Equinox Http Registry bundle

— register servlets and resources using eclipse extension
registry
« OPS4J
— (http://wiki.ops4j.org/confluence/display/ops4j/Pax)
— Pax Web (Servlet 2.5, based on Jetty)
— Pax Web Extender — War

* Focus of Spring Dynamic Modules v1.1

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

5@993

The Spring DM 1.1 way...

| Web App.
mstalls. Bundle

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert

Web applications as Bundles

e “Regular” WAR files
e Additional Bundle-Manifest

e web.xml shows how Spring DM is integrated

<context-param>
<param-name>contextClass</param-name>
<param-value>org.springframework.osgi.web.context.
support.OsgiBundleXmlWebApplicationContext</param-value>
</context-param>

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

ecCliPSE

Spring DM Web Support by Example

META-IMF
- MANIFESTMF

WEB-INF

res0Urces

com.wuetherich.ozgi.orderservice webclient

classes service
LUSes service

OrderService

CustomerService

FH] META-INF
| MANIFEST.MF

EH] META-INF
~ MANIFESTMF

| com.wuetherich.osgi.customersemnvice.impl

uses
classes

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ H

Demo/Exercise 6: Web front-end

« Step 1:

* Import the example projects into your workspace
« Step 2:

+ Start the server runtime

+ Take a look at the console

« Step 3:

* Try out the web-front-end

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

85

Agenda

e What is Spring Dynamic Modules?
e Spring Dynamic Modules in Action
e Server-side Applications

e RCP Applications

e Summary

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

|

(1

f):"

Pure RCP Client for a Spring Backend

« Server provides REST/SOAP services, client
consumes via HTTP

« Server provides services via RMI, client consumes via
RMI

Application Server

HTTP, RMI, ...

'

Business
Logic and
Process

Eclipse RCP

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Evaluation

+ Unrestricted usage of Spring on the server
+ Unrestricted usage of RCP on the client

= Different deployment and programming models
(OSGi bundles on the client, typical WAR/EAR files on
the server)
* Good for highly decoupled systems
+ Difficult for more integrated systems

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

|

(1

f):"

RCP & Spring on the Client, Spring Backend

« Uses Spring/Remoting for remote communication

« With all the possible variations (RMI, HTTPInvoker,
Hessian, Burlap, etc.)

Application Server

Spring
ProxyBean
Business
Logic and
Process

Eclipse RCP

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Evaluation

+ Unrestricted usage of Spring on the client and the
server

+ Unrestricted usage of RCP on the client
+ Easy remote communication via Spring/Remoting

= Still different deployment and programming models
(OSGi bundles on the client, typical WAR/EAR files on

the server)

+ Although most likely classes are shared between client and
server

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

=c CliPSE

Spring & OSGi everywhere

* Equinox/OSGi can be used to implement middle-tiers
+ Same component model on both sides
+ Same extensibility for both sides

» Client and server shares components

Application Server

|

Eclipse RCP (Ul-Part)

Spring
ProxyBean
Business
Logic and
Process

Spring

Equinox OSGi

Equinox OSGi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Evaluation

+ Full OSGi power on client and server
+ Full Spring power on client and server

+ Homogeneous programming model for client and
server

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

— _@p Se

More Spring on the Rich Client

* Dependency injection and all other technology
abstractions usable as well
¢+ Just straight forward using Spring Dynamic Modules

« How to incorporate this with the Extension-Registry?
* For example, inject dependencies into views and editors?

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Alternative 1: Views with dependencies

* Define the view in the Spring context
+ Using Spring for dependency injection

« Define the Extension using an extension factory
+ Which delegates the creation to the Spring context

+ Dependency injection for general extensions

= Cumbersome manual programming for each
extension

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

-

Alternative 2: Auto wiring

* Define the view in the Spring context
+ Using Spring for dependency injection

« Add a call to the auto wiring factory from the views
constructor

+ Dependency injection for general extensions
= Still some manual extra code for each extension

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Alternative 3: Spring-Extension-Bridge

* Define the view in the Spring context
+ Using Spring for dependency injection

« Define the SpringExtensionFactory as implementation
class in the extension (generic variant of alternative 1)

+ Dependency injection for general extensions
+ No additional code

+ Easy to use

= Need to change extension definition

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

D

Alternative 4: @Configurable

* Define the view in the Spring context
+ Using Spring for dependency injection

« Add the @Configurable annotation to the view
Implementation

+ And use Equinox Aspects to load-time weave the spring aspects

+ Dependency injection for general extensions
+ No additional code, unchanged extensions
= Adds load-time weaving overhead

= More difficult infrastructure setup

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Demo: Spring-powered RCP

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Summary

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ H

Summary

« OSGi: the dynamic module system for Java
« Benefits: modularity, versioning, operational control
* The server-side is coming to OSGi

« Spring Dynamic Modules brings the familiar Spring
model to the OSGi platform

« Enterprise application development path to be
smoothed during 2008

* e.g. SpringSource Application Platform

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, _

Thank you for your attention

*Q&A

* Martin Lippert

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

Backup Materials

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,_

D

Versioning

L

« Packages are imported

¢ optionally with version
information

Your
Application

- Can have multiple versions
of same package
concurrently

Lib C v2

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

|

(1

;j:’

Try it: versioning

Ve rsion | ng Import-Package: org.osgi.framework;version="1.3.0",
com. springsource.printing.lib;version="2.0",

D emo com.springsource.date time\

Export-Package: \\
com.springsource.datetime

Pri nt| ng Import-Package:

L|b V2 com.springsource.printing.lib;
version="[1.0.0,2.0.0)"

Export-Package:
com.springsource.printing.lib; P Fl ntl ng

version="2.0" le V1

Export-Package:
com. springsource.printing.lib;
version="1.0"

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert,

