
Tutorial:
Spring and OSGi Combined
with Spring Dynamic Modules

Martin Lippert, aquinet it-agile GmbH
BJ Hargrave IBM & CTO OSGi AllianceBJ Hargrave, IBM & CTO, OSGi Alliance

(Adrian Colyer, CTO, SpringSource)

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.01

A few words about myself…

• Martin Lippert
Senior IT consultant at akquinet it-agile
GmbH, Germany
lippert@acm.org

• Focus
Agile soft are de elopmentAgile software development
Refactoring
Eclipse technology

• Equinox incubator committer

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.02

Agenda
• What is OSGi?• What is OSGi?
• What is Spring Dynamic Modules?
• Spring Dynamic Modules in ActionSpring Dynamic Modules in Action
• Server-Side Applications
• RCP Applicationspp
• Summary

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.03

OSG – What?

• OSGi™:OSGi :
„A dynamic module system for Java“

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.04

OSGi is …

• … a module system for Java that allows the definition
of …

Modules (called „bundles“),Modules (called „bundles),
Visibility of the bundle contents (public-API vs. private-API)
Dependencies between modules
Versions of mod lesVersions of modules

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.05

OSGi is …

• … dynamic
Bundles can be installed, started, stopped, uninstalled and
updated at runtimeupdated at runtime

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.06

OSGi is …

• … service oriented
Bundles can publish services (dynamically)
Bundles can find and bind to services through a service registryBundles can find and bind to services through a service registry
The runtime allows services to appear and disappear at runtime

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.07

What does OSGi look like? (Low Level)
Identification

Bundle-SymbolicName: org.eclipse.equinox.registry
Bundle-Version: 3.2.100.v20060918
Bundle-Name: Eclipse Extension Registry
Bundle-Vendor: Eclipse.org

Bundle-ClassPath: ., someOtherJar.jar

B ndle Acti ator org eclipse core internal registr osgi Acti ator
Lifecycle

Classpath

Bundle-Activator: org.eclipse.core.internal.registry.osgi.Activator

Import-Package: javax.xml.parsers,
org.xml.sax,

Dependencies

org.osgi.framework;version=1.3
Require-Bundle: org.eclipse.equinox.common;bundle-version="[3.2.0,4.0.0)"
Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0,J2SE-1.3

Exports

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.08

Export-Package: org.eclipse.equinox.registry

Implementations

• Open source implementationsOpen source implementations
Eclipse Equinox (http://www.eclipse.org/equinox/)
Apache Felix (http://cwiki.apache.org/FELIX/index.html)
Knopflerfish (http://www.knopflerfish.org/)Knopflerfish (http://www.knopflerfish.org/)
ProSyst mBedded Server Equinox Edition
(http://www.prosyst.com/products/osgi_se_equi_ed.html)

• Commercial implementations
ProSyst (http://www.prosyst.com/)
Knopflerfish Pro (http://www.gatespacetelematics.com/)

(not necessarily complete)

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.09

What is Spring Dynamic Modules?
• Project ObjectivesProject Objectives
• Introduction to key Spring concepts
• Bundles and module contexts
• Application design
• The extender pattern
Wh ' i it?• Who's using it?

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.010

Spring Dynamic Modules is...
• A open source project in• A open source project in

the Spring portfolio
– led by SpringSource
– committers from BEA and

Oracle
– many non-code y

contributions from the
community and from the
OSGi EEG and CPEG

http://www.springframework.org/osgi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Project Objectives

• Bring the benefits of OSGi:• Bring the benefits of OSGi:
modularity
versioning
lifecycle support

• To enterprise application developmentTo enterprise application development

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Design considerations (raw OSGi)
• Platform dynamics• Platform dynamics

– services may come and go at any time
– ServiceTracker

• Asynchronous activation
– service dependency management

T ti• Testing
• Concurrency and thread management

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Project Objectives

• The simplicity and power of Spring• The simplicity and power of Spring...
– with the dynamic module system of OSGi

• Modules need instantiating, configuring, decorating, g g g g
assembling, ...

• Need an easy way to manage service references
between modulesbetween modules

• Easy unit and integration testing

Bring the benefits of OSGi to enterprise applications

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Bring the benefits of OSGi to enterprise applications

Key Spring Concepts

SimpleSimpleSimple
Object
Simple
Objectj

Portable Service Abstractions

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

The Heart of Spring

• Lightweight container• Lightweight container
– Full stack, simple object based application development

• Works in any environmenty
– web-app, ejb, integration test, standalone

P id• Provides…
– a powerful object factory that manages the instantiation,

configuration, decoration and assembly of business objects

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Spring-based development

• View application as a set of components• View application as a set of components
with clear layering

• Each component is a simple objectEach component is a simple object
Testable in isolation

• Container manages component configuration and
assembly
C t i d t t t ti• Container decorates your components at runtime

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Typical application layering

Web interface
(MVC)

Other remote
interfaces

presentation
layer

Service interfacesservice
layer

Domain
objects

DAO i t f

Service implementationslayer

DAO implementations

DAO interfacesdata access
layer

RDBMS

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

RDBMS

Typical application layering

Web interface
(MVC)

Other remote
interfaces

Service interfaces

Domain
objects

DAO i t f

Service implementationsSpring
managed

DAO implementations

DAO interfaces

RDBMS

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

RDBMS

Spring Framework

• Dependency injection• Dependency injection
• Integration with persistence technologies (JDBC,
Hibernate)

• Web application support Spring MVC, JSF and Struts
• Enterprise service abstractions

Transactions
Messaging

• Aspect Oriented Programming supportAspect Oriented Programming support

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Without dependency injection
public class TransferServiceImpl implements TransferService {p p p {

private AccountRepository accountRepository;

public TransferServiceImpl() {
DataSource ds = (DataSource)

ctx.lookup(“myAppserverDS”);
accountRepository = new JdbcAccountRepository(ds);

}}
…

}

Ti d t Jdb i l t tiTied to Jdbc implementation
Tied to application server JNDI
Hard to test. Hard to reuse

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Dependency Injection
public class JdbcAccountRepository implements pub c c ass Jdbc ccou t epos to y p e e ts

AccountRepository {
…

} Implements a service interface

public class TransferServiceImpl implements TransferService {
private final AccountRepository accountRepository;

public TransferServiceImpl(AccountRepository ar) {
this.accountRepository = ar;

}}
…

} Depends on service interface;
conceals complexity of implementation;

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

conceals complexity of implementation;
allows for swapping out implementation

Spring Blueprint
<beans>

<bean id=“transferService” class=“app.impl.TransferServiceImpl”>
<constructor-arg ref=“accountRepository” />

</bean>

<bean id=“accountRepository” class=“app.impl.JdbcAccountRepository”>
<constructor-arg ref=“dataSource” />

</bean></bean>

<bean id=“dataSource” class=“com.oracle.jdbc.pool.OracleDataSource”>
<property name=“URL” value=“jdbc:oracle:thin:@localhost:1521:BANK” />

t “ ” l “ t f ” /<property name=“user” value=“moneytransfer-app” />
</bean>

</beans>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Bundles and Module Contexts

• OSGi bundle <==> Spring Application Context• OSGi bundle <==> Spring Application Context
we call it a module context

• Module context created when bundle is started
• destroyed when bundle is stopped

• Module components <==> Spring beans
instantiated, configured, decorated, assembled by Spring

• Components can be imported / exported from OSGi
service registry

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Application Design
• Application becomes a set of co-operating bundles• Application becomes a set of co-operating bundles

– vertical decomposition first
– then horizontal

• Communication via service registry

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Application wiring

P PP

S SLib
Lib

S Sb
Lib

R R D

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Spring Dynamic ModulesSpring Dynamic Modules

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

The Extender pattern

• “The OSGi Extender Model”• The OSGi Extender Model
Peter Kriens, Feb. 2007
http://www.osgi.org/blog/2007/02/osgi-extender-model.html

• [A]synchronous bundle listener
listen to install, update, uninstall events
inspect bundle contentinspect bundle content
Take appropriate action on behalf of the bundle

• Spring Dynamic Modules extender bundle:
org.springframework.osgi.bundles.extender
must be installed and active for module contexts to be created

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

must be installed and active for module contexts to be created

Spring Dynamic Modules Users
• OracleOracle

building next generation
middleware platform on
OSGi and Spring DM

• BEA
WebLogic Event Server 2.0
built on Spring Dynamic
Mod lesModules

• Over 1000 subscribers on
mailing list

http://groups.google.com/group/spring-osgi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

p g p g g g p p g g

Agenda
• What is Spring Dynamic Modules?• What is Spring Dynamic Modules?
• Spring Dynamic Modules in Action
• Server-side ApplicationsServer side Applications
• RCP Applications
• Summaryy

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.030

Spring Dynamic Modules in Action
• Creating a Spring-powered bundleCreating a Spring-powered bundle
• Importing and exporting services
• The whiteboard pattern
• Dynamics
• Startup and shutdown

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.031

Spring-powered bundles
• Spring module context (app context) per bundle• Spring module context (app context) per bundle

(module)
– created automatically for you by Spring extender bundle
– no need to depend on any OSGi APIs

• META INF/spring/* xml• META‐INF/spring/*.xml

• or Spring‐Context header in MANIFEST.MF

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Spring powered bundlesSpring-powered bundles

P bli h d i t fPublished interfaces

ProtectedProtected
implementations

Spring configuration
files

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Demo/Exercise 1: Spring-powered bundle

• Step 1:• Step 1:
Implement a bundle including a bundle activator
Try out your bundle via the console

• Step 2:
Implement a POJO with a method “hello” and a methodImplement a POJO with a method hello and a method
“goodbye”
Create a spring context and define your POJO as a bean
D fi th d i it d d t th dDefine your methods as init- and destroy-methods
Try out your bundle via the console using Spring DM

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Getting log output

• Spring uses Jakarta Commons Logging• Spring uses Jakarta Commons Logging
• Commons logging doesn't behave well under OSGi

Use SLF4J binding instead
Simple Logging Facade for Java (http://www.slf4j.org/)

• Bundles:
jcl104 over slf4j (static binding of jcl to slf4j)jcl104.over.slf4j (static binding of jcl to slf4j)
slf4j.api (the slf4j API)
slf4j.log4j12 (implementation of slf4j over log4j)

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Getting log output
osgi> log4j:WARN No appenders could be found for logger g g j pp gg
(org.springframework.util.ClassUtils).

log4j:WARN Please initialize the log4j system properly.

• Where to put log4j.properties?
which bundle is it that looks for this file?
how do we make it visible to that bundle?

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Getting log output
• Use a Fragment BundleUse a Fragment Bundle

“Fragments are bundles that are attached to a host bundle by
the Framework.” - OSGi Core Specification, 3.14

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Logging Configuration Fragment
Bundle SymbolicName: com springsource logging configBundle-SymbolicName: com.springsource.logging.config
Bundle-Version: 1.0.0
Bundle-Vendor: SpringSource
Fragment-Host: org.springframework.osgi.log4j.osgi;
bundle version="1 2 15 SNAPSHOT"bundle-version="1.2.15.SNAPSHOT"

Bundle-RequiredExecutionEnvironment: J2SE-1.5

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Demo/Exercise 2: log4j configuration

• Create a fragment for the log4j configuration• Create a fragment for the log4j configuration
• Put the log4j configuration into this bundle
• Attach the fragment to the log4j host bundleAttach the fragment to the log4j host bundle
• Try it out!

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Spring Dynamic Modules in Action
• Creating a Spring-powered bundleCreating a Spring-powered bundle
• Importing and exporting services
• The whiteboard pattern
• Dynamics
• Startup and shutdown

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.039

Services
• Your application is constructed as a set of bundles• Your application is constructed as a set of bundles,

each with their own module context
• How do we reference beans in other modules?

– use the OSGi Service Registry
• advertise public services
• import references to external services• import references to external services

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Beans and services

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Service import/export overview
Exporting context:
<bean id="printService"

class="com.springsource.osgi.print.internal.PrintServiceImpl"
init-method="init"
destroy-method="destroy"/>

<osgi:service ref="printService"
interface="com.springsource.osgi.print.PrintService"/>

I ti t t
<bean id="printClient"

class="com.springsource.osgi.print.client.Client"
init-method="init">

Importing context:

t et od t
<property name="printService" ref="printService"/>

</bean>

<osgi:reference id="printService"

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

interface="com.springsource.osgi.print.PrintService"/>

Exporting a service
<bean id="printService"<bean id= printService

class="com.springsource.osgi.print.internal.PrintServiceImpl"
init-method="init"
destroy-method="destroy"/>

• any Spring bean can be exported as OSGi service

<osgi:service ref="printService"
interface="com.springsource.osgi.print.PrintService"/>

y p g p
• offers access to the ServiceRegistration object

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Importing a service
<bean id="printClient" p

class="com.springsource.osgi.print.client.Client"
init-method="init">
<property name="printService" ref="printService"/>

</bean>

<osgi:reference id="printService"
interface="com.springsource.osgi.print.PrintService"/>

• locates the best OSGi service that matches the
description

• handles the service dynamics internally

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Demo/Exercise 3: OSGi services

• Step 1:• Step 1:
Define an interface for your bean in a separate package
Export only this interface

• Step 2:
Export your bean as an OSGi service using the interface

St 3• Step 3:
Take a look at the available services at the console

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Demo/Exercise 3: OSGi services

• Step 4:• Step 4:
Create another bundle including a spring context
Define a bean that requires an instance of your service

Define the property
Import the OSGi service as a bean

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Controlling Service Exporting

• Which interface(s) should the service be registered• Which interface(s) should the service be registered
under?

a single interface, use the interface attribute
multiple interfaces, use the nested interfaces element
Or... have Spring Dynamic Modules calculated the exported
interface set for you automatically.

auto-export values are interfaces, class-hierarchy, or all-classes.

<osgi:service id="printService" auto-export="interfaces"/>

auto export values are interfaces, class hierarchy, or all classes.

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Controlling Service Exporting

• Service always has service property• Service always has service property
org.springframework.osgi.bean.name
(set to bean name)

• Specify additional service properties explicitly if needed

<osgi:service ref="printService"
interface="com.springsource.osgi.print.PrintService">

<osgi:service-properties>
<entry key="aKey" value="someValue"/>
<entry key="aKey" value-ref="someBeanName"/>

</osgi:service-properties></osgi:service properties>
</osgi:service>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Controlling Service Importing

• Use filter expressions• Use filter expressions
RFC 1960: A String representation of LDAP Search Filters

<osgi:reference id="printService"<osgi:reference id="printService"
interface="com.springsource.osgi.print.PrintService"
filter="(colour=true)"/>

• Special attribute bean-name matches on
org.springframework.osgi.bean.name property

f fcondition anded with filter expression if present

• Can specify multiple interfaces using nested interfaces
element.

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

e e e t

Spring Dynamic Modules in Action
• Creating a Spring-powered bundleCreating a Spring-powered bundle
• Importing and exporting services
• The whiteboard pattern
• Dynamics
• Startup and shutdown

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.050

The Whiteboard Pattern

• “Listeners Considered Harmful: The Whiteboard• Listeners Considered Harmful: The Whiteboard
Pattern”

OSGi Alliance Technical Whitepaper, 2004
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

• Lifecycle issues around listener registrationLifecycle issues around listener registration
• Solution: whiteboard

event source is not registered as a service
listeners register as services using well-known interface
event source uses a tracker to track listener services

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.051

Importing a set of services
<bean id="printClient" p

class="com.springsource.osgi.print.client.Client"
init-method="init">
<property name="printService" ref="printService"/>

</bean>

<osgi:set id="printService"
interface="com.springsource.osgi.print.PrintService"/>

• locates all OSGi services that match the description
• handles the service dynamics internally
• See also: <osgi:list... />

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Demo/Exercise 4: whiteboard pattern

• Step 1:• Step 1:
Enhance your second bundle to use a set of services
Call these services regularly

E.g. via a thread started in the init method

• Step 2:
Split your first bundle into an interface bundle (containing justSplit your first bundle into an interface bundle (containing just
the interface) and an implementation bundle

• Step 3:
Create a third bundle that registers a different implementation
of the interface as OSGi service

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Spring Dynamic Modules in Action
• Creating a Spring-powered bundleCreating a Spring-powered bundle
• Importing and exporting services
• The whiteboard pattern
• Dynamics
• Startup and shutdown

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.054

Service interface types
exported [with versionA service bundle…

Dealing with dynamics

Export-Package: a.b.c

exported [with version
information]

private
implementation

packagespackages

"Passive" contribution
Service implementation
locked away

Passive contribution
• types added to type space
• bundles see new version on

l ti ft i t ll/ f h

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

resolution after install/refresh

A service bundle…
Dealing with dynamics

Published services

Private implementation "Active" contribution
• services published in registry
• bundles see service changes

Private implementation
objects

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

immediately

Service Dynamics
• What happens when a service goes away?• What happens when a service goes away?

– osgi:reference cardinality=”0..1”
• track replacement and retarget proxy when suitable target found
• ServiceUnavailableException after timeout if invoked

– osgi:reference cardinality=”1..1”
• as above, plus
• unregister any exported services that depend on the unsatisfied

reference

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Cardinality (single reference)

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Registration management
<osgi:service id="myService" ref="exposedBean"/>g y p

<bean id="exposedBean" class="...">
<property name="myHelper" ref="helperBean"/>

</bean>

<bean id="helperBean" class="...">
<property name="fooService" ref="fooService"/>

</bean>

<osgi:reference id="fooService" interface="..."/>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Service Dynamics
• What happens when a service goes away?• What happens when a service goes away?

– osgi:set/list cardinality=”0..n”
• service is removed from the set
• Iterator contract is honored

– osgi:set/list cardinality=”1..n”
• as above, plus
• unregister any exported services that depend on the unsatisfied

service reference

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Cardinality - many

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Demo/Exercise 5: Dynamics

• Play with the two implementation bundles via the• Play with the two implementation bundles via the
console

Starting and stopping the different bundles and see what
happens

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Listening
• You work with a constant reference• You work with a constant reference

– Proxy / Set / List

• Spring Dynamic Modules manages the target backing p g y g g g
service(s) for you

• You can optionally listen to bind / unbind events
• You can optionally listen to register / unregister events

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Reference listeners
<osgi:reference id="printService"

interface="com.springsource.osgi.print.PrintService">

<osgi:listener bind-method="onBind"
unbind-method="onUnbind">

<b b l "M C t Li t "/><beans:bean class="MyCustomListener"/>
</osgi:listener>

</osgi:reference>

class MyCustomListener {

public void onBind(PrintService service, Map serviceProperties) {...}

public void onBind(FastPrintService service, Map serviceProps) {...}

public void onUnbind(ColorPrintService service, Map props) {...}

}

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

}

Registration listeners
<osgi:service id="printService"

interface="com.springsource.osgi.print.PrintService">

<osgi:registration-listener
registration-method="registered"

i t ti th d " i t d"unregistration-method="unregistered"
ref="printServiceListener"/>

</osgi:service>

class MyCustomListener {

public void registered(PrintService service, Map serviceProps) {...}

public void unregistered(PrintService service, Map serviceProps) {...}

}

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Spring Dynamic Modules in Action
• Creating a Spring-powered bundleCreating a Spring-powered bundle
• Importing and exporting services
• The whiteboard pattern
• Dynamics
• Startup and shutdown

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.066

Startup
• Context creation• Context creation

– blocks until all mandatory service references are satisfied
– simply start your bundles and let Spring Dynamic Modules

figure it out
• Control via Spring-Context manifest header directives

– wait-for-dependencies:=[true|false]
– timeout:=[seconds]

• E.g.
– Spring-Context: *;wait-for-dependencies:=falsep g ; p

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Shutdown

• Module contexts disposed when bundle is stopped• Module contexts disposed when bundle is stopped
• Stopping the extender bundle disposes of all module
contexts created by it

First those bundles that do not export any referenced services
(in reverse bundle id order)
Cycles broken first by ranking, then by service idy y g, y

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Agenda
• What is Spring Dynamic Modules?• What is Spring Dynamic Modules?
• Spring Dynamic Modules in Action
• Server-side ApplicationsServer side Applications
• RCP Applications
• Summaryy

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.069

Server-side Applications
• Options for using OSGi on the server-sideOptions for using OSGi on the server-side
• Enterprise library "gotchas"
• Context class loader management

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.070

Embedded OSGi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

OSGi as a server platform

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Nested OSGi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Enterprise Libraries under OSGi
• class and resource-loading problems• class and resource-loading problems

– class visibility
– Class.forName
– context class loader

• Good news: Spring 2.5 is OSGi-ready
d l hi d b dl– modules shipped as bundles

– all class loading behaves correctly under OSGi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Example: Class visibility

Data Layer
Bundle

Import-Package Import-Package

Domain Model
Bundle

<Export-Pkg>

Hibernate
Bundle

<Export Pkg>domain
t

g g
types,
mapping
files SessionFactory

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Class visibility solutions

• Dynamic-ImportPackage• Dynamic-ImportPackage
a last resort, too broad a scope
does not affect module resolution

• Equinox Buddy Policy
In Hibernate bundle manifest:

• Eclipse-BuddyPolicy : registered• Eclipse BuddyPolicy : registered
In domain model bundle manifest:

• Eclipse-RegisterBuddy : org.hibernate
• Import Package: org hibernate• Import-Package: org.hibernate

• Attach a Fragment Bundle
With required Import-Package headers

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Class.forName

• Caches the returned• Caches the returned
class in the initiating
class loader

A D

– native, vm-level cache

• Can cause class loading
errors

B

forName(...,CCL)

errors
• Prefer

ClassLoader.loadClass C C'C C

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Context Class Loader

• Heavily used in enterprise Java• Heavily used in enterprise Java
• Expected to have visibility of application types +
classpath

• ContextClassLoader is undefined in OSGi!
No notion of “context”; No notion of “application”

S l ti• Solutions:
Eclipse Equinox: Context Finder
Spring Dynamic Modules : CCL managementp g y g

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Context ClassLoader Management

• Context ClassLoader guaranteed to have visibility of• Context ClassLoader guaranteed to have visibility of
bundle classpath when the module context for a bundle
is created

• Control CCL on service invocation:
client-side (attribute of reference element)

context-class-loader=”client|service-provider|unmanaged”context class loader client|service provider|unmanaged
service-side (attribute of service element)

context-class-loader=”service-provider|unmanaged”

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Web Applications
• OSGi HttpService (Servlet 2 1 - 1998)• OSGi HttpService (Servlet 2.1 - 1998)

– registerServlets and resources under aliases
– programmatic configuration

• Equinox Http Registry bundle
– register servlets and resources using eclipse extension

registryregistry
• OPS4J

– (http://wiki.ops4j.org/confluence/display/ops4j/Pax)
Pax Web (Servlet 2 5 based on Jetty)– Pax Web (Servlet 2.5, based on Jetty)

– Pax Web Extender – War
• Focus of Spring Dynamic Modules v1.1

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

The Spring DM 1.1 way…

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Web applications as Bundles

• “Regular” WAR files• “Regular” WAR files
• Additional Bundle-Manifest

<context-param>
Cl /

• web.xml shows how Spring DM is integrated

<param-name>contextClass</param-name>
<param-value>org.springframework.osgi.web.context.
support.OsgiBundleXmlWebApplicationContext</param-value>

</context-param>

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener

</listener-class>
</listener>

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

</listener>

Spring DM Web Support by Example

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Demo/Exercise 6: Web front-end

• Step 1:• Step 1:
Import the example projects into your workspace

• Step 2:p
Start the server runtime
Take a look at the console

St 3• Step 3:
Try out the web-front-end

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Agenda
• What is Spring Dynamic Modules?• What is Spring Dynamic Modules?
• Spring Dynamic Modules in Action
• Server-side ApplicationsServer side Applications
• RCP Applications
• Summaryy

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.085

Pure RCP Client for a Spring Backend

• Server provides REST/SOAP services client• Server provides REST/SOAP services, client
consumes via HTTP

• Server provides services via RMI, client consumes via

Application Server

p ,
RMI

Application Server

Rich Client

us
in

es
s

og
ic

 a
nd

ro

ce
ss

on
tr

ol

DataVi
ew

Sp
rin

g-
xp

or
te

rHTTP, RMI, …

ok

B
u

Lo PC
oV S Ex

Eclipse RCP Spring

ok

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Evaluation

+Unrestricted usage of Spring on the server+Unrestricted usage of Spring on the server
+Unrestricted usage of RCP on the client

−Different deployment and programming models
(OSGi bundles on the client, typical WAR/EAR files on
the server)

Good for highly decoupled systems
Difficult for more integrated systemsDifficult for more integrated systems

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

RCP & Spring on the Client, Spring Backend

• Uses Spring/Remoting for remote communication• Uses Spring/Remoting for remote communication
• With all the possible variations (RMI, HTTPInvoker,

Hessian, Burlap, etc.)

Application Server

, p,)

Rich Client

B
us

in
es

s
Lo

gi
c

an
d

Pr
oc

es
s

C
on

tr
ol

DataVi
ew

Sp
rin

g-
Ex

po
rt

er

Sp
rin

g-
Pr

ox
yB

ea
n

ok

P

Eclipse RCP

SpringSpring

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Evaluation

+Unrestricted usage of Spring on the client and the+Unrestricted usage of Spring on the client and the
server

+Unrestricted usage of RCP on the clientg
+Easy remote communication via Spring/Remoting

−Still different deployment and programming models
(OSGi bundles on the client, typical WAR/EAR files on
the server)the server)

Although most likely classes are shared between client and
server

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Spring & OSGi everywhere

• Equinox/OSGi can be used to implement middle tiers• Equinox/OSGi can be used to implement middle-tiers
Same component model on both sides
Same extensibility for both sides

Application Server

• Client and server shares components

pp

Rich Client

B
us

in
es

s
Lo

gi
c

an
d

Pr
oc

es
s

C
on

tr
ol

DataVi
ew

Sp
rin

g-
Ex

po
rt

er

Sp
rin

g-
Pr

ox
yB

ea
n

ok

B LC EP

Equinox OSGi

SpringSpringEclipse RCP (UI-Part)

Equinox OSGi

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Evaluation

+ Full OSGi power on client and server+ Full OSGi power on client and server
+ Full Spring power on client and server
+Homogeneous programming model for client and+Homogeneous programming model for client and

server

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

More Spring on the Rich Client

• Dependency injection and all other technology• Dependency injection and all other technology
abstractions usable as well

Just straight forward using Spring Dynamic Modules

• How to incorporate this with the Extension-Registry?
F l i j t d d i i t i d dit ?For example, inject dependencies into views and editors?

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Alternative 1: Views with dependencies

• Define the view in the Spring context• Define the view in the Spring context
Using Spring for dependency injection

• Define the Extension using an extension factoryg y
Which delegates the creation to the Spring context

+D d i j ti f l t i+Dependency injection for general extensions
−Cumbersome manual programming for each

extension

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Alternative 2: Auto wiring

• Define the view in the Spring context• Define the view in the Spring context
Using Spring for dependency injection

• Add a call to the auto wiring factory from the views g y
constructor

+Dependency injection for general extensions
−Still some manual extra code for each extension

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Alternative 3: Spring-Extension-Bridge

• Define the view in the Spring context• Define the view in the Spring context
Using Spring for dependency injection

• Define the SpringExtensionFactory as implementation p g y p
class in the extension (generic variant of alternative 1)

+Dependency injection for general extensions
+No additional code
+Easy to use+Easy to use
−Need to change extension definition

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Alternative 4: @Configurable

• Define the view in the Spring context• Define the view in the Spring context
Using Spring for dependency injection

• Add the @Configurable annotation to the view @ g
implementation

And use Equinox Aspects to load-time weave the spring aspects

+Dependency injection for general extensions
+No additional code unchanged extensions+No additional code, unchanged extensions
−Adds load-time weaving overhead
−More difficult infrastructure setup

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

p

Demo: Spring-powered RCP

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Summary

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Summary

• OSGi: the dynamic module system for Java• OSGi: the dynamic module system for Java
• Benefits: modularity, versioning, operational control
• The server-side is coming to OSGig
• Spring Dynamic Modules brings the familiar Spring

model to the OSGi platform
• Enterprise application development path to be

smoothed during 2008
e g SpringSource Application Platforme.g. SpringSource Application Platform

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Thank you for your attention

•Q&AQ&

• Martin Lippert
li t@lippert@acm.org

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Backup Materials

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Versioning
• Packages are importedPackages are imported

optionally with version
information

Can have multiple versions

Your
Application

• Can have multiple versions
of same package
concurrently Lib A Lib BLib A Lib B

Lib C v1 Lib C v2

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

Try it: versioning

Versioning Import-Package: org.osgi.framework;version="1.3.0",Versioning
Demo

Import Package: org.osgi.framework;version 1.3.0 ,
com.springsource.printing.lib;version="2.0",
com.springsource.datetime

Printing
Lib v2

Date/
Time

Export-Package:
com.springsource.datetime
Import-Package:
com.springsource.printing.lib;Lib v2

Printing

Time

Export-Package:
com.springsource.printing.lib;

i 2 0

version="[1.0.0,2.0.0)"

Lib v1version="2.0"

Export-Package:
com springsource printing lib;

Spring + OSGi = Spring Dynamic Modules | Tutorial | © 2008 by Martin Lippert, BJ Hargrave, Adrian Colyer; made available under the EPL v1.0

com.springsource.printing.lib;
version="1.0"

