
i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 1 -

Models and Aspects

Markus Völter
voelter@acm.org
www.voelter.de

Martin Lippert
lippert@acm.org

www.martinlippert.org

Models And Aspects
Handling

Cross-Cutting Concerns
in the context of MDSD

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 2 -

Models and Aspects

• Independent Consultant

• Based out of Heidenheim,
Germany

• Focus on
• Software Architecture
• Middleware
• Model-Driven Software

Development

About us

Markus Völter
voelter@acm.org
www.voelter.de

Martin Lippert
lippert@acm.org
www.martinlippert.org

• Consultant at it-agile GmbH

• Hamburg, Germany

• Focus on
• Software Architecture
• Agile Software

Development
• Eclipse-Technology

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 3 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 4 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 5 -

Models and Aspects

What is MDSD?

• Domain Driven Development is about making software
development more domain-related as opposed to
computing related. It is also about making software
development in a certain domain more efficient.

Software Technology
Concepts

Domain Concepts

Software Technology
Concepts

Domain Concepts

mental work
of developers

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 6 -

Models and Aspects

What is MDSD? II

• Model-Driven Software Development is about making
models first class development artefacts as opposed
to “just pictures”.

• Various aspects of a system are not programmed
manually; rather they are specified using a suitable
modeling language.

• The language for expressing these models is specific to
the domain for which the models are relevant. The
modeling languages used to describe such models are
called domain-specific languages (DSL).

• Models have to be translated into executable code for
a specific platform.

• Such a translation is implemented using model
transformations.

• An approach based on model interpretation is also
possible, but seldomly used – I will ignore this here!

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 7 -

Models and Aspects

What is MDSD? III

Model

Domain
Specific

Language

Metamodel
textual

graphical

Domain

Ontology

bounded area of
knowlege/interest

semantics

precise/
executable

multiple

partial

viewpoint

subdomains

composable

Metametamodel
target

software
architecture

software
architecture

transform

compile

interpret

multi-step

single-step

no
roundtrip

knowledge

several

design
expertise

• Related Approaches (Specializations):
MDA, SF, DSM, GP, …

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 8 -

Models and Aspects

How does MDSD work?

• Developer develops model(s)
based on certain
metamodel(s).

• Using code generation
templates, the model is
transformed to executable
code.

• Optionally, the generated
code is merged with
manually written code.

• One or more model-to-
model transformation steps
may precede code generation.

ModelModelModel

Transformer Tranformation
Rules

Model

Transformer
Code

Generation
Templates

Generated
Code

Manually
Written
Code

optional

Metamodel

Metamodel

op
tio

na
l,

 c
an

 b
e

re
pe

at
ed

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 9 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 10 -

Models and Aspects

What is AOSD?

• AOSD is about localizing cross-cutting concerns into
well-defined modules called aspects.

• Various approaches to AOSD are possible, including
language extension (AspectJ) and
framework/infrastructure-based approaches (such as
Spring AOP, JBOSS AOP or AspectWerkz).

• A core characteristic of each AOSD tool is its join point
model, i.e. the means by which the base code and the
aspect code can be joined.

• Static and Dynamic join points can be supported

• The granularity of the join point model varies.

• Introductions/Inter-Type declarations are often, but
not always possible

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 11 -

Models and Aspects

How does AOSD work?

• Developer develops
program code

• Developer develops
(or reuses) aspect
code

• Developers specifies the
weaving rules (defines
pointcuts)

• Aspect Weaver weaves
program and aspects
together and produces
the „aspectized“ program
• This may happen statically

or dynamically

Aspect
Aspect

Aspect
AspectNormal OO

Program Aspect

Weaving
Specification

Aspect Weaver

Woven Program

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 12 -

Models and Aspects

What AOSD is, too

• The above explanation of AOSD is what the mainstream
considers AOSD to be.

• There are, however, two additional "aspects”:

• introductions

• and collaborations

• I will not focus on these in the main presentation – I will
provide some information at the end.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 13 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modeling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 14 -

Models and Aspects

Commonalities AOSD/MDSD

• Separating Concerns. Both approaches can be used to
separate concerns in a software system.

• AOSD typically modularizes CCC by separating them into
aspects and later weaving them into the “normal” code
(source or binary).

• MDSD works by specifying system functionality in a more
abstract, and domain specific DSL and the transformations
are used to add those concerns that can be derived from
the model’s content.

• Technical Aspects. Both approaches are often used to
factor out (and then later, reintegrate) repetitive, often
technical aspects.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 15 -

Models and Aspects

Commonalities AOSD/MDSD II

• Mechanics. Technically, both approaches work with
queries and transformations

• In AOSD you use pointcuts to select a number of relevant
points (join points) in the execution of a program (or in its
code structure) and “contribute” additional functionality
called advice at these points.

• In MDSD, a model transformation selects a subset (or
pattern) of the model, and transforms this subset into
some other model.

• Metamodels. Metamodels play an important role in both
approaches.

• In MDSD, the metamodel is clearly evident, as it forms
the foundation of the model that is being transformed.

• In AOSD the join point model of the particular AOP system
is also a metamodel. A program execution is an instance
of this metamodel.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 16 -

Models and Aspects

Commonalities AOSD/MDSD III

• Selective Use. An important concept in both approaches
is the fact that the handling of CCC can be turned on or off
for a specific system.

• In AOP, you can decide at weaving time whether you want
to have a certain aspect included in the system.

• In MDSD, you can select the transformation you want to
use for a specific system – the chosen transformation may
or may not address a certain concern.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 17 -

Models and Aspects

Differences AOSD/MDSD

• Dynamic vs. Static.

• MDSD works by transforming static models . That means,
MDSD transformations work before the system is run at
generation time.

• AOSD, on the other hand, contributes behaviour to points
in the execution of a system. In many systems it is
therefore possible, to consider dynamic aspects in the
definitions of pointcuts.

• Invasiveness.

• MDSD needs to be used during the development of the
software system, since the (finished) system is obtained
by transforming models into code.

• With AOP, however, it is (in most systems) possible to
introduce behaviour after the base system has been
developed completely.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 18 -

Models and Aspects

Differences AOSD/MDSD II

• Abstraction Level.

• A fundamental concept of MDSD is that it allows developers to
express their intent with regard to the software system on a
higher abstraction level, more closely aligned with the problem
domain. A DSL serves exactly this purpose.

• AOSD, on the other side, is basically bound to the abstraction
level of the system for which it handles the CCC; in AOP, this is
the base programming language.

• Non-Programming Language Artefacts.

• In MDSD, it is easily possible to also generate non-programming
language artefacts such as configuration files, build scripts or
documentation.

• AOP however works on the running system (remember it is
dynamic in nature), and as such it cannot affect things that are
not relevant at runtime

• Exception: CME

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 19 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 20 -

Models and Aspects

The Topic of This Talk

• There are a number of commonalities between AOSD and
MDSD. As a consequence, developers often don’t know
whether, or how they should relate AOSD and MDSD.

• Should they use either AOSD or MDSD?

• Is AOSD or MDSD a more general approach?

• Is MDSD a special case of AOSD?

• Or vice versa?

• Can/should both approaches be used together, or would
that just be “hype overkill”?

• The Problem is:

How can cross-cutting concerns be handled
efficiently in an MDSD-based development
environment?

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 21 -

Models and Aspects

Why not simply generate „AOP code“?

• Upon first look, one might think “why not simply
generate AspectJ artefacts, why bother with all these
alternatives”?

• Some reasons:

• There might not be a AO language extension for the
target programming language

• We might want to modularize non-programming-
language CCC artefacts

• Using an AO tool might not be possible for technical,
political or developer-skill reasons

• Using an additional tool (an aspect weaver) in an MDSD
environment adds additional complexity we might not
want

• So it is well worth looking at alternatives…

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 22 -

Models and Aspects

How do we know? Forces

• Applicability. We would like to be able to use the
pattern’s solution to the problem above in as many
situations, environments and “technology environments”
as possible. The broader the applicability the better.

• Granularity. Different approaches provide different levels
of join point granularity, over which pointcuts can be
specified.

• For example, an approach might only allow to advice calls
to component operations,

• whereas other approaches might allow interception of any
method call in the system, thrown exceptions, field
access, etc.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 23 -

Models and Aspects

How do we know? Forces II

• Performance/Footprint. Each proposed solution has a
more or less dramatic impact on system performance or
footprint. In some environments, such as embedded
systems, this can become a problem that deserves
developers’ attention.

• Complexity. While a certain approach solves a specific
problem, it creates additional complexity – aka problems –
in another area.

• For example, the requirement to use additional languages
or tools can be such an issue.

• Flexibility. Different approaches to CCC handling have
different consequences with regards to (runtime)
flexibility.

• Some approaches allow to turn on/off the handling of a
specific aspect at runtime or allow to change the
behaviour at a certain pointcut, while others don’t.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 24 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 25 -

Models and Aspects

TEMPLATE INHERENT AOP // Context

• You are using a template-based code generator. The
templates contain code that iterates over the model as
well as textual output that should be created for a certain
part of the model.

• The CCC you need to handle can be well localized in the
templates.

• Example. This, creates a method signature and skeleton
implementation for each Operation in a model.
«DEFINE OperationDef FOR Operation»

public final «ReturnType» «Name» (
«FOREACH Parameter AS p EXPAND USING SEPARATOR ", "»
«p.Type.QualifiedJavaTypeName» «p.Name»

«ENDFOREACH») {
return «Name»Internal(

«FOREACH Parameter AS p EXPAND USING SEPARATOR ", "»
«p.Name»

«ENDFOREACH»);
}

«ENDDEFINE»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 26 -

Models and Aspects

TEMPLATE INHERENT AOP // Solution

• Use normal template-level if statements to address the
CCC. Depending on the if expression, a particular piece of
code is either added to the generated code or not.

• Example. The following example code uses an if
statement to add security checking in case security checks
are enabled for the particular operation.
«DEFINE OperationDef FOR Operation»

public final «ReturnType» «Name» (… as before …) {
«IF checksRequired»
if (!Security.check(“«Class.Name»”, “«Name»”))
throw new SecurityEx();

«ENDIF »
return «Name»Internal(… as before …);

}
«ENDDEFINE»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 27 -

Models and Aspects

TEMPLATE INHERENT AOP // Rationale

• A template is a meta program, a program that creates
programs.

• As such, usually a number of base-level artefacts (here:
operations) are created from a single template. If you
need to handle concerns that cross-cut these locations,
then a template modularizes this cross cutting concern.

• A simple if on template level is therefore enough to handle
the CCC.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 28 -

Models and Aspects

TEMPLATE INHERENT AOP // Consequences

• Applicability. Requires no special features in the target
language. Not limited to programming language artefacts.

• Granularity. Can only be used if the pointcut is actually
in a section of the code that is generated, pointcuts are
limited to what is represented in the model, or to what can
be derived by generation rules from the model.

• Performance/Footprint. There is no specific
performance hit or footprint issue.

• Complexity. There is no complexity problem unless the
same CCC cross-cuts the templates and not the generated
code. This requires checking the if expression in multiple
places. Good: You do not need additional (aspect) tools.

• Flexibility. The approach is completely static. Nothing
can be changed (i.e. woven in/out) at runtime.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 29 -

Models and Aspects

TEMPLATE INHERENT AOP // Known Uses, Summary

• From a tools perspective, every template-driven code
generator can be used to implement this approach.

• As well, all MDSD projects I know of have used some form
or another of this pattern to address CCC.

• This pattern is so ubiquitous, that mentioning specific
known uses is pointless.

• Summary. While this approach seems rather trivial, it can
be used to handle a surprisingly large amount of CCC that
arise in practical work. And the fact that you don’t need
any AOP tool, is an additional benefit.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 30 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 31 -

Models and Aspects

AO TEMPLATES // Context

• If you’re building related families of code generators,
using TEMPLATE-INHERENT AOP becomes too unwieldy
because all kinds of concerns are handled inside the
templates.

• Example.
«DEFINE OperationDef FOR Operation»

public final «ReturnType» «Name» (… as before …) {
«IF checksRequired»
// security code

«ENDIF »
«IF loggingRequired»
// logging code

«ENDIF »
«IF billingRequired»
// billing code

«ENDIF »
return «Name»Internal(… as before …);

}
«ENDDEFINE»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 32 -

Models and Aspects

AO TEMPLATES // Solution

• Use an AO approach on template level. Rather that using
template-level if statements, use an “aspect template”
that advices the standard code generation templates with
CCC-specific code.

• Example. The following piece of code defines two explicit
join points: MethodBegin and MethodEnd.

• After these hooks have been defined, another template
can attach itself to this hook. The following piece of code
shows the logging aspect as an example.

«DEFINE OperationDef FOR Operation»
public final «ReturnType» «Name» (… as before …) {
«EXPAND HookMethodBegin»
«ReturnType» res = «Name»Internal(… as before …);
«EXPAND HookMethodEnd»
return res;

}
«ENDDEFINE»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 33 -

Models and Aspects

AO TEMPLATES // Solution II

• Example cont’d.

• The implicit scheme of defining join points means that
“aspect templates” can attach to before or after already
defined templates.

«DEFINE LoggingMethodBegin FOR Operation AT HookMethodBegin»
«IF loggingRequired»
// entering method such and such

«ENDIF »
«ENDDEFINE»

«DEFINE LoggingMethodEnd FOR Operation AT HookMethodEnd»
«IF loggingRequired»
// leaving method such and such

«ENDIF »
«ENDDEFINE»

«DEFINE OperationLogging BEFORE OperationDef»
// logging stuff

«ENDDEFINE»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 34 -

Models and Aspects

AO TEMPLATES // Rationale

• This pattern basically introduces AOP at the template
level.

• TEMPLATE-INHERENT AOP uses normal template
programming to handle CCCs in the resulting generated
code by using ifs on template level.

• This pattern handles CCCs on template level and uses AO
techniques to address those.

• Challenge: For example, the following piece of code
accesses the Name property of an Operation metaclass:

• In order to access aspect-specific properties, we will have
to add these properties to already existing metaclasses
AOP on the metamodel.

«DEFINE OperationDef FOR Operation»
public void «Name» …

«ENDDEFINE»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 35 -

Models and Aspects

AO TEMPLATES // Consequences

• Applicability. Requires no special features in the target
language. But requires support from the generator –
not very widely provided!

• Granularity. Template-structure must provide a suitable
structure

• Performance/Footprint. There is no specific
performance hit or footprint issue.

• Complexity. In general, complexity is reduced by
increasing modularity – same argument as for AO in
general. Additional accidental complexity depends very
much on the generator tool.

• Flexibility. The approach is completely static. Nothing
can be changed (i.e. woven in/out) at runtime.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 36 -

Models and Aspects

AO TEMPLATES // Known Uses, Summary

• The openArchitectureWare code generator [OAW]
provides a feature called attached templates that
implements this pattern.

• It uses interceptors that can be configured by the
developer to contribute additional operations to the
metaclasses.

• Also, the XVCL frame processor allows to “contribute”
frames (which can be seen as a form of code generation
templates) to previously defined hooks.

• Summary. AOP on template level is very powerful.

• However, the generator and its templates effectively
become an AO language. The tools I am aware of only
support this approach as an add-on, limiting the scalability
of the approach.

• Specifically, the IDE support that we are used to (such as
AspectJ’s Eclipse integration) is not available.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 37 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 38 -

Models and Aspects

AO PLATFORMS // Context

• You are generating code that is intended to run on a
technical platform, usually some kind of communication
or component/container middleware.

• Such middleware typically already supports factoring out
some of the technical CCC that occur in the domain for
which the middleware has been developed.

• The middleware platform usually also provides some kind
of configuration facility to control how the middleware
applies its CCC capabilities to the respective piece of
application code.

• Example. In EJB systems, a component encapsulates
functional (or domain) concerns.

• Technical concerns such as transactions, security, load
balancing, or pooling are taken care of by the container.

• Deployment descriptors accompany the components
and control how the application server handles them.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 39 -

Models and Aspects

AO PLATFORMS // Solution

• Use the CCC-handling capabilities of the middleware as far
as possible.

• Use the code generator to generate the annotations
that control how the middleware handles the (manually
written, or generated) application code.

• The information needed to generate the configuration is
extracted from the model.

• Example. Many MDSD tools in the context of EJB require
developers to develop POJOs that contain the business
logic.

• The generator then creates “EJB wrappers” that ensure
the POJOs conform to the constraints defined by EJB.

• The generator also creates a deployment descriptor to
control the EJB container.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 40 -

Models and Aspects

AO PLATFORMS // Rationale

• This pattern basically suggests to leave the handling of
the CCC to the target architecture.

• To make this possible, the model needs to contain all the
information that goes into the configuration.

• We need to make sure this information does not clutter
the “business” model described with our DSL. AO
MODELLING is a good way to keep the core model clean.

• This pattern not just recommends to use a platform’s
CCC-handling capabilities in case it happens to provide
these. Rather, the pattern suggests to actively build
platforms that provide hooks to handle the typical CCC in
the respective domain.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 41 -

Models and Aspects

AO PLATFORMS // Consequences

• Applicability. The approach requires that the platform provides
means to handle the CCC you need to address.

• In case you build the platform for your domain, this is not a
problem.

• In case you use an off-the-shelf platform such as EJB, this can
become a problem. Use PATTERN-BASED AOP or POINTCUT
GENERATION.

• Granularity. Limited to the granularity provided by the
platform.

• Performance/Footprint. Platforms that support the handling
of CCCs will almost always imply some overhead, since it will
always use some dynamic, generic, or reflective mechanism

• Complexity. The approach described in this pattern nicely
factors out CCC into the platform. If the platform handles the
CCC you need, this approach is unbeatable in simplicity.

• Flexibility. In case the platform handles CCC, it is usually
possible to turn on/off a specific CCC during runtime, or change
the way how the CCC is handled.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 42 -

Models and Aspects

AO PLATFORMS // Known Uses, Summary

• EJB provides a platform where (some) CCC can be
handled by specifying how they should be handled in the
deployment descriptors.

• The CORBA component model (CCM) provides a similar
feature. Plain CORBA allows developers to add
interceptors to remote objects (or groups of remote
objects, see.

• Summary. Non-trivial systems developed using MDSD will
almost always include a rich, domain-specific platform,
From a reuse perspective, it is a good idea to move as
much (generic, domain-wide) functionality into this
platform because you can use it from within the generated
code.

• CCC are primary candidates for functionality in such a
platform.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 43 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 44 -

Models and Aspects

PATTERN-BASED AO // Context

• In some scenarios the platform you are required to use
does not provide services that handle CCC, or it does
not handle the CCC you need to address.

• You still need to have the flexibility to change at runtime
the CCCs handled by the system.

• The pointcuts are accessible to the generation process.

• Example. Consider again an EJB based system. Consider
also, that you need to implement so-called dynamic (or
data driven) security. This means, you cannot use EJBs
default (static) security model. However, you also don’t
want to bother application (component) developers with
handling the security concerns.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 45 -

Models and Aspects

PATTERN-BASED AO // Solution

• Use a selection of the well-known patterns to generate an
infrastructure that allows for custom CCC-handlers to be
plugged in.

• Typically, this consists of generating proxies [GoF] for
application components

• that can hook-in interceptors [POSA2].

• Use a factory to instantiate the proxies if necessary.

• Consider you face the following situation:

Client Some
Component

I1

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 46 -

Models and Aspects

PATTERN-BASED AO // Solution II

• You can replace this setup by the following:

• From a client’s perspective, nothing has changed, the
client still uses the interface I1. However, the client
actually talks to a proxy that handles CCC, and then
forwards to the real object.

InterceptorInterceptor

Some
Component

Proxy

I1

Some
Component

I1

Client

Interceptor

I-Int

Factory

createscreates

delegates
to

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 47 -

Models and Aspects

PATTERN-BASED AO // Solution III

• Make sure that the join points are method calls; then the
following interceptor interface can be used:

• The factory determines which interceptors will be
used for a given object based on some kind of
configuration (file).

public interface Interceptor {
public void beforeInvoke(Object target,

String methodName,
Object[] params);

public void afterInvoke(Object target,
String methodName,
Object[] params,
Object retValue);

}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 48 -

Models and Aspects

PATTERN-BASED AO // Solution III

• The following is the basic structure of the proxy:
public class SomeComponentProxy implements I1 {

private SomeComponent delegate;
private Interceptor interceptor; // can also be a list

// of interceptors
public String someOperation(String p1, int p2) {
Object target = delegate;
String opName = “someOperation”;
Object[] params = {p1, p2};
Interceptor.beforeInvoke(target, opName, params);
String res = delegate.someOperation(p1, p2);
Interceptor.afterInvoke(target, opName, params, ret);
return res;

}
// more operations of I1

}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 49 -

Models and Aspects

PATTERN-BASED AO // Solution IV

• Example. In the EJB scenario introduced above, the
generated proxy would be the bean implementation class
from the perspective of the application server, the real
bean implementation would be an “implementation detail”
of this class.

forwards
invocations

A Bean

Bean Impl
Class

Remote
Interface

Home
Interface

Session
Bean

Container
Invoker

Lifecycle
Manager

controls lifecycle

uses

forwards
invocations

Bean Impl
Proxy

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 50 -

Models and Aspects

PATTERN-BASED AO // Rationale

• The approach here works whenever

• (a) you can influence object creation so that the proxy
is created instead of the real object, and

• (b) if method call-level pointcuts are acceptable.

• This approach is not really specific to MDSD, you can in
principle use the same approach in the context of normal,
non-generative software development. However, since you
would have to manually implement all the proxies, this is
impractical, and thus hardly ever done.

• The coarse granularity seems like a limitation, in
practice, it typically isn't.

• In well-designed component based systems it is even
desirable to apply aspects to component boundaries to
keep the system manageable and understandable.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 51 -

Models and Aspects

PATTERN-BASED AO // Consequences

• Applicability. The only precondition is that you are able to
“tweak in” the proxy, which means generally, that you have to
be able to control object creation. No specific features are
required of the generator.

• Granularity. The approach only works for join points on method
call level.

• Performance/Footprint. Considerable impact on performance
• An additional object (the proxy) for each domain object.

• For each method call, the method data has to be reified and the
interceptor(s) called.

• As a consequence, the approach does not really make sense for
fine grained CCC. Using it on component level (as in the EJB
example) is perfectly ok, though.

• Complexity. The approach does add complexity, since you have
the proxies, the factories and the interceptors to deal with.

• Flexibility. Depending on whether the interceptors are
configured at runtime or not, it is possible to add, remove or
change “aspects” at runtime

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 52 -

Models and Aspects

PATTERN-BASED AO // Known Uses, Summary

• The approach to dynamic security in EJB has been used in
several projects, some of which I have been directly
involved with.

• A component infrastructure for small (mobile) devices
implemented in Java uses the same approach.

• Java’s Dynamic Proxy API uses the same idea, but based
on reflection as opposed to static code generation.

• Summary. I have used this approach in various projects
on component level and it works nicely. Particularly the
EJB example above is useful (since it is completely
portable and does not depend on and application server-
specific features). Building the necessary generator (if you
work with an MDSD approach anyway) is almost trivial.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 53 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 54 -

Models and Aspects

POINTCUT GENERATION // Context

• In some scenarios all the approaches described above don’t
work:

• performance not sufficient

• the platform does not support your needs,

• or the granularity offered by the solution is too coarse.

• Is there still hope?

• Example. Component infrastructure for embedded systems

• container is generated specifically for the scenario at hand

• you want to add tracing, primarily for timing purposes.

• Resource consumption and (near) real time behaviour is an
important consideration, you cannot use generic solutions.

• Cluttering the templates with all kinds of if statements is also
not acceptable, because you need to trace different things at
different times.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 55 -

Models and Aspects

POINTCUT GENERATION // Solution

• Integrate an AOP language into the MDSD software
development infrastructure.

• Define a number of pre-built advice, part of the platform

• Generate the pointcut based on specifications in the
model.

• Use the AOP language’s standard weaver to integrate
the aspects with the generated code.

• Example. XML below is part of the model for a node and
container in the distributed, embedded system

• Tracing option is set to app, i.e. we want to trace
application level operations. (DSL-specific pointcut def.)

<node name=”outside”>
<container name=”sensorsOutside” tracing=”app”>
…

</container>
</node>

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 56 -

Models and Aspects

POINTCUT GENERATION // Solution II

• Example cont’d. As part of the platform, you define the
following abstract aspect (using the AspectJ language). It
does not define a pointcut, it is thus “pure advice”.

• For every container that has tracing set to app, code like
the following (a pointcut!) is generated:

package aspects;
public abstract aspect TracingAspect {

abstract pointcut relevantOperationExecution();
before(): relevantOperationExecution() {
// use some more sophisticated logging,
// in practice
System.out.println(System.currentTimeMillis()+”::”+

thisJointPoint.toString());
}

}

package aspects;
public aspect SensorsOutsideTrace extends TracingAspect {

pointcut relevantOperationExecution() :
execution(* manual.comp.temperatureSensor..*.*(..)) ||
execution(* manual.comp.humiditySensor..*.*(..));

}

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 57 -

Models and Aspects

POINTCUT GENERATION // Solution III

• Example cont’d. This generated aspect can now be
woven with the rest of the (generated, or manually
written) code, and thus add tracing to the required parts.

• See below for the code generation template
«DEFINE TracingAspect FOR System»

...
«FOREACH Container AS c EXPAND»
«IF c.Tracing == "app"»
«FILE "aspects/”c.Name”Trace”»
package aspects;
public aspect «c.Name»Trace extends TracingAspect {
pointcut relevantOperationExecution() :
«FOREACH c.UsedComponent AS comp

EXPAND USING SEPARATOR “||”»
execution(* manual.comp.«comp.Name»..*.*(..))

«ENDFOREACH»;
}
«ENDFILE»

«ENDIF»
«ENDFOREACH»
...

«ENDDEFINE»

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 58 -

Models and Aspects

POINTCUT GENERATION // Solution IV

• If your base language as well as the AOP language
extension support metadata annotations (for example,
AspectJ 5 or a combination of Java 5 and AspectWerkz)
you can use the following approach:

• The pre-built aspect includes an pointcut definition that
tests the presence of a certain metadata attribute.

• If it is present, the artefact is selected by the
pointcut, and the advice is added.

• The code generator simply has to add the metadata
attribute to the artefact, if it wants the artefact to be
affected by the advice.

• Note that in languages that don't support annotations, you
can alternatively use marker interfaces – although
this only works for advising classes, and not other
artefacts such as fields or operations.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 59 -

Models and Aspects

POINTCUT GENERATION // Rationale

• An interesting question is how to integrate AOP
languages efficiently.

• Providing advice as part of the platform and then
generating the pointcuts is a very useful approach indeed.

• This requires that the domain developer decides which
advice might be necessary.

• However, this is required anyway, since the DSL has to
have a feature to control where to apply the aspect, and
where not.

• One could also specify the tracing concern in a
separate model (see AO MODELLING). Example:
<trace-config>

<trace container=”sensorsOutside” level=”app”/>
<trace container=”sensorsInside” level=”all”/>

</trace-config>

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 60 -

Models and Aspects

POINTCUT GENERATION // Rationale II

• It is interesting to see that this pattern suggests using an
AOP language such as AspectJ as an implementation
technology in MDSD projects.

• The aspectual nature of the tracing concern does not show
up in the DSL.

• Rather, AOP is used to keep the implementation of the
tracing feature small and fast.

• I think that this is the primary use case for languages like
AspectJ in the context of MDSD.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 61 -

Models and Aspects

POINTCUT GENERATION // Consequences

• Applicability. The approach can be applied only if, for the
respective target language, an AO extension is available.

There are no special requirements for the generator.

• Granularity. The achievable granularity depends on the
join point model of the aspect language used.

• Performance/Footprint. Depends very much on the
implementation of the aspect language, specifically, when
the weaving occurs.

• Complexity. Complexity can raise significantly using this
approach, since it opens up a “whole new can of worms”.

• Flexibility. Again, this depends on the aspect language
used for the implementation.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 62 -

Models and Aspects

POINTCUT GENERATION // Known Uses, Summary

• The small components prototype uses this approach to
handle CCCs that cannot be handled using PATTERN-
BASED AOP.

• In the context of mobile phone software, the pattern has
been used to generate static aspects (aspects that
produce compile time errors) to check developer
conformance to programming guidelines.

• Summary. This approach is certainly the most powerful.

• However, it requires the use of an aspect language in
addition to all the generator and modeling tools that are
necessary for MDSD anyway.

• This can be a huge problem in practice.

• Also, in contrast to the MDSD approach, most AO
language extensions require runtime support libraries. In
some production environments (such as in large
companies) this can be a showstopper

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 63 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 64 -

Models and Aspects

AO MODELLING // Context

• Up to now, we were mainly concerned with handling CCC in
the resulting application, which would be built using an MDSD
approach.

• App is described using models, and model transformations and
code generation is used to create the final application.

• In many scenarios, however, it is necessary to separate
concerns in the application models, too!

• Example. Consider you are building a web application. Such a
web application typically consists of

• (a) a business object model,

• (b) the persistence mapping of this model,

• (c) the web pages, forms and the workflow, and

• (d) the layout of these forms and pages.

• You have to specify all this in the model in order to be able to
generate a complete application.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 65 -

Models and Aspects

AO MODELLING // Solution

• Create several models, one for each aspect.

• Each model uses a DSL (i.e. concrete syntax and
metamodel) suitable for the expression of the particular
aspect.

• The code generator reads all these models, weaves
them, and then generates the complete application from
it.

• Join points are defined on the metamodels, for example,
by using a specific metaclass in more than one
aspect’s metamodel, thereby building up links between
the models.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 66 -

Models and Aspects

AO MODELLING // Solution II

• Example. In the example above, you could use

• (a) a UML class diagram (of course, with suitable
stereotypes) to describe the business object model,

• (b) an XML document to describe tables and the
mapping,

• (c) another class diagram (with other stereotypes) to
describe pages, forms and the workflow, and finally,

• (d) a Visio diagram to describe form layout.

• Each of these four models need to be connected suitably
to describe a complete and consistent system.

• For this to work, the metamodels must be related, as
shown in the next illustration. Note how associations cross
the various aspect metamodels.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 67 -

Models and Aspects

AO MODELLING // Solution III

• Example cont’d. Metamodels and their connections.

Form Layout

Entity Attribute*

Key
Attribute

TableColumn
Type

type

*

Mapping

*

Business Objects

Page Form

FormField

*

*

maps

Button

target

Pages, Forms and Workflow

represents
represents

Form
Layout

Tabular
Layout

Simple
Layout

[...]

[...]

Persistence

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 68 -

Models and Aspects

AO MODELLING // Rationale

• This pattern effectively suggests to have a separate model for
each aspect. The challenge of this approach lies in the fact that
the generator tool must be able to:

• read the various models

• check for consistency

• weave the models

• Note that you cannot have separate generators for the
different aspects, since the metamodels (and thus, also the
models) are related.

• Note that implementing this weaving process is much easier
inside a generator compared to a tool like AspectJ.

• The reason is, that your domain metamodels are usually vastly
simpler than the metamodel (i.e. abstract syntax) of a language
like Java,

• and that you define the join point model yourself.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 69 -

Models and Aspects

AO MODELLING // Consequences

• Applicability. The approach can be applied only if the
generator can handle various models with different
concrete syntaxes and is able to perform the weaving.

• Granularity. The achievable granularity is completely
under the control of the developer, since the join point
model is part of the (custom) metamodel definition.

• Performance/Footprint. This pattern has no
consequences for runtime performance and footprint,
since it is applied at generation time.

• Complexity. If your generator really represents all
models as objects in the implementation language once
they are parsed, the implementation of this pattern
becomes almost trivial.

• Flexibility. This issue does not apply here, since the
pattern has no runtime consequences.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 70 -

Models and Aspects

AO MODELLING // Known Uses, Summary

• All MDSD projects that I am or was involved in have
used this approach,

• this includes a C-based component model for embedded
real time systems,

• web applications

• and components for mobile devices.

• The documentation of the openArchitectureWare
generator shows an extensive practical example of using
more than one model as generator input.

• Summary. In non-trivial scenarios, AO MODELLING is
absolutely necessary to keep (large) models manageable.

• Make sure you use a tool where this approach can be
implemented painlessly, before you use the generator tool
on larger projects.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 71 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 72 -

Models and Aspects

PATTERN-BASED AOP and AO PLATFORMS

• PATTERN-BASED AOP basically combines a couple of
design patterns to implement an interception
framework. The necessary proxies are created using
code generation.

• You can "morph" this pattern to become an AO PLATFORM
in the following way:

• use runtime code generation to add the necessary
proxies (or more general, hooks) to the system, for
example during class load time.

• use a configuration file to define which interceptors
should be used for a certain class.

• You can then use this infrastructure as the AO PLATFORM
for your application code.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 73 -

Models and Aspects

AO PLATFORM and POINTCUT GENERATION

• The boundaries between AO PLATFORMS and POINTCUT
GENERATION seems to blur. There are clearly the two extremes:

• AspectJ is an AO language extension for Java. Using it is
definitely an instance of the POINTCUT GENERATION pattern.

• EJB 2.x are a – quite limited – AO PLATFORM. Deployment
descriptors allow you to handle certain predefined CCC.

• JBoss AOP, for example, is not as readily categorized into one
of these two categories. You can define arbitrary advice
(basically, by implementing interceptors) and then define a
pointcut definition in a separate XML file.

• On the one hand it is POINTCUT GENERATION: you generate a
pointcut (the XML file) that determines where to weave in pre-
built advice (the interceptors).

• On the other hand it is an AO PLATFORM, since it also comes
with a set of predefined advice that are typically used in the
relevant domain (enterprise systems).

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 74 -

Models and Aspects

The special case of AO MODELLING

• AO MODELLING plays a somewhat special role in that
it can be used together with any of the other patterns,
since it takes care of CCC on the "input side" of the MDSD
process.

• You cannot substitute this pattern by using an AOP
language extension in the generated code.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 75 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 76 -

Models and Aspects

Introductions

• Introductions are used to "inject" artefacts into an
existing system statically (as opposed to dynamic
advice in join points).

• For example, additional fields or operations can be
introduced into existing classes.

• An example could be "for all classes that implement
interface X, add the following methods:").

• Some AOSD languages also allow to change static class
features, such as changing the superclass, or adding an
additional implemented interface; this is called open
classes.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 77 -

Models and Aspects

Introductions II

N/AUsing on the fly model
modifications, it is common
practice to add additional features
to model elements.

AO MODELLING

Depends on the AOSD tool used. If you use AspectJ, for
example, both features are possible.

POINTCUT
GENERATION

Not possible.PATTERN-
BASED AOP

Depends on the platform, not widely supported. Some allow
it by using tools such as byte-code modification (Spring is an
example).

AO PLATFORMS

N/AIt is possible to add template
code to existing templates. The
explicitly defined hooks shown
above can be considered to be an
introduction.

AO TEMPLATES

Using a template-IF, it is easy to conditionally inject code into
the generated artefacts.

TEMPLATE-
INHERENT AOP

Open ClassesIntroductionsPattern

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 78 -

Models and Aspects

Collaborations

• A collaboration between artefacts can be considered
an aspect.

• Using this approach, a collaboration becomes a type,
in the same way as classes or aspects (as we know them
traditionally) are types.

• Using this approach, you can capture large portions of
collaboration code in well-separated aspects and
then simply bind concrete artefacts to instances of these
collaborations. "Traditional" AOSD mechanics are used to
fill in the required "magic".

• This "kind" of AOSD is very important for handling
functional aspects as opposed to technical aspects but is
still subject for research and not widely used in practice.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 79 -

Models and Aspects

Collaborations II

• General Idea of collaboration aspects:

• Define a collaboration as a type.
for example, the Observer pattern

• The collaboration type describes the various roles that
are required for the collaboration
in the example, Subject and Observer

• In a concrete system, pointcuts are used to instantiate
the collaboration by binding concrete artefacts to the
instantiated collaboration
for example, in a drawing program, the class Figure plays the role of the
subject, while the Canvas plays the role of the Observer.

• The collaboration also defines, which features artefacts
must have in order to be able to play a role
for example, they must implement the ISubject interface, or have an
operation registerObserver().

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 80 -

Models and Aspects

Collaborations III

• The patterns do not address this aspect, with two
notable exceptions:

• The AO Moelling pattern can support this approach nicely:

• Use markup in models (such as tagged values in UML
models) to mark certain artefacts as playing a certain role in
a collaboration.

• The generator can then make sure the model artefact has
all the required features, or use model modifications to
actually add them.

• Later stages can make sure the generated code can play
the collaboration role.

• You can extend the POINTCUT GENERATION pattern so
that you generate collaboration bindings in case the
underlying AOSD language supports this.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 81 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 82 -

Models and Aspects

Overview of the Consequences

Applicability

TEMPLATE-INHERENT AOP

AO TEMPLATES

AO PLATFORM

PATTERN-BASED AOP

POINTCUT GENERATION

AO MODELLING

Granularity Performance

Complexity

TEMPLATE-INHERENT AOP

AO TEMPLATES

AO PLATFORM

PATTERN-BASED AOP

POINTCUT GENERATION

AO MODELLING

Flexibility

N/A

N/A

- + - + - +

- +- +

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 83 -

Models and Aspects

Overview of the Approaches

• This illustration shows where is an MDSD workflow CCC
can be handled.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 84 -

Models and Aspects

Where is the loom?

The weaving is done by the code generator (acting as
a model weaver) before code generation.

AO
MODELLING

The pointcuts are generated statically. The weaving
happens in a separate weaving phase, at load time or
at runtime, depending on the used AO tool.

POINTCUT
GENERATION

The generator creates the proxies during system
generation. Adding the interceptors (i.e. defining
pointcuts) can happen during system startup or at
any time during runtime.

PATTERN-
BASED AOP

The platform takes care of weaving, typically at load
time or runtime

AO
PLATFORMS

The weaving is handled by the template engine.AO
TEMPLATES

No weaving happens – the advice are inlined into the
template code.

TEMPLATE-
INHERENT
AOP

Weaving LocationPattern

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 85 -

Models and Aspects

C O N T E N T S

• What is MDSD

• What is AOP

• Commonalitities and Differences

• Forces

• Patterns
• Templates-Based AOP

• AO Templates

• AO Platforms

• Pattern-Based AOP

• Pointcut Generation

• AO Modelling

• Pattern Relationships

• Introductions and Collaborations

• Overview and Summary

THE END.

i n g e n i e u r b ü r o f ü r s o f t w a r e t e c h n o l o g i e w w w.voelter.de © 2004 Markus Völter. - 86 -

Models and Aspects

Some advertisement ☺

• Völter, Stahl

• Modellgetriebene
Softwareentwicklung
Technik, Engineering, Management

• dPunkt 2005

• www.mdsd-buch.de

