
How Module Systems Give
Direction to Architectures

it-agile GmbH
martin.lippert@it-agile.de

Martin Lippert

mailto:martin.lippert@it-agile.de
mailto:martin.lippert@it-agile.de

We are agile
because we don‘t
care about
architecture – it will
emerge magically

But you are probably wrong...

failblog.com

Instead you live
in great danger

failblog.com

the long version

Gall’s Law: “A complex system that works is invariably found to
have evolved from a simple system that worked. The inverse
proposition also appears to be true: A complex system designed
from scratch never works and cannot be made to work. You have
to start over, beginning with a working simple system.”

– John Gall

Start simple and
evolve

How do systems look
like in our daily work?

Looks familiar?

8

 Wake up!
We need to change our direction...

Let‘s talk about

Architecture

Past...

11

Present...?

12

Future... ?!?

13

But what
instead?

14

Flexibility &
Modularity

We need flexibility

changing requirements
learning process

incremental development

16

But wait!

We already have
all this...

We have:

Object-Orientation
Patterns

Information Hiding
Encapsulation

Layers
...

We think our systems look like this...

But reality can
be hard...

We need a real

module system

OSGi ALLIANCE SUCCESS STORY

OSGi is a trademark of the OSGi Alliance in the United States, other countries, or both. Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both. All other marks are trademarks of their respective companies.

OSGi Alliance
2400 Camino Ramon, Suite 375
San Ramon, CA 94583 USA
web: www.osgi.org
email: info@osgi.org

I.
Dependencies

Module A Module B

II.
Visibilities

Private Implementation
Module A

API Module A

III.
Dynamics

25

Where do
we go?

Loose Coupling &
High Cohesion

Think about your dependencies
every single day

Sounds good...

But how to realize?

Good old
design

principles

DIP SOC LSP ADP TDA DRY AIP

ISP SCP OCP IHP SRP SDP

new design
principles

Use services

Use extensions

Separate between
interface and implementation

working but extensible
components

What do we learn?

Guide 1:
Many small modules

instead of few big ones

Guildeline 2:
Fewer connections
between modules

instead of everything is wired to everything

Guideline 3:
Less visibilities

instead of making everything public

Guideline 4:
Many small frameworks

instead of few big ones

Guideline 5:
Think about extensibility

instead of knowing everything

Guideline 6:
Design your architecture

every day

instead of ignoring what you have learned

Thank you
for your attention

Martin Lippert
martin.lippert@it-agile.de

it-agile GmbH

