Wie Modulsysteme
Architekturen beeinflussen

,ff.\
g e}
it-agile =

mailto:martin.lippert@it-agile.de
mailto:martin.lippert@it-agile.de

How do systems look
like in our daily work?

We think our systems look like this...

iar?

Looks fami

The Old Way
of Software
Architecture

3 ,i Huge Upfront Desigh &
NG Architecture

| A‘-']f'HI;.‘
1

Agile Software
Development

Focus on Business Value

Changing Requirements

Incremental Development

Simple Solutions

Small Steps

Inspect & Adapt

Short Release Cycles
Shipping

No Big Upfront Design
Changing Code all the Time

We are agile
because we don‘t
care about
architecture - it
will emerge
magically

But you are probably wrong...

e liea)

failblog.com

Instead you livel™
in great danger

\

failblog.com

Start simple and
evolve

the long version

Gall’s Law: “A complex system that works is invariably found to
have evolved from a simple system that worked.The inverse
proposition also appears to be true: A complex system designed
from scratch never works and cannot be made to work.You have

to start over, beginning with a working simple system.”
— John Gall

'hatishoud
WEII 0%

'
4
|

y ,

Ty

ty
rit

,_PM ’ .,v.g_
=i, o F
. .\ - s 8

arl

i
|

23

— ..\;
i . —
ydul

exi

. 7%

We need flexibility

changing requirements
learning process
incremental development

But wait!

We already have
all this...

We have:

Object-Orientation
Patterns
Information Hiding
Encapsulation
Layers

We need a real

module system

<2 O0S6Gi

Alliance

IO
Dependencies

Module A » Module B

APl Module A

Private Implementation

Module A

111.
Dynamics

Where do
we go?

Loose Coupling &
High Cohesion

Think about your dependencies
every single day

Sounds good...

But how to realize?

Good old
design
principles

DIP SOC LSP ADP TDA DRY AIP

N SCP OCP IHP SRP SDP

new design
principles

Separate between

Use services =—————>p : :
interface and implementation

working but extensible

Use extensions =3
components

Guide I:
Many small modules

instead of few big ones

Guildeline 2:
Fewer connections
between modules

instead of everything is wired to everything

Guideline 3:
Less visibilities

instead of making everything public

Guideline 4:
Many small frameworks

instead of few big ones

Guideline 5:
Think about extensibility

instead of knowing everything

Guideline 6:
Desigh your architecture
every day

instead of ignoring what you have learned

Thank you
for your attention

Martin Lippert

martin.lippert@it-agile.de

" .I"\
I -agl\E _/.

Visit us at our booth

