
© 2009 by Martin Lippert; made available under the EPL v1.0 | April 23rd, 2009

Lessons Learned: 5 Years of Building
Enterprise OSGi Applications

Martin Lippert (akquinet it-agile GmbH)

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Overview

• Background
• Structure matters
• Extensions & Services
• Dynamics
• Integration
• Build & Provisioning

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Background

• Enterprise Business Applications
 On top of OSGi
 Developed since (2004, Eclipse 3.0)
 No classical RCP stuff… ;-)

• Client apps using:
 Swing, Hibernate, JDO, JDBC, JNI, SOAP, a lot of Apache

stuff, JUnit, FIT, Spring DM, Jetty, CICS-Adaptor, …

• Server apps using:
 JDO, Hibernate, SOAP, REST, Tomcat, Spring DM, CICS-

Adaptor, HTTP, a lot of custom libs, Memcached, …

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Characteristics

• Highly integrated systems
 Broad variety of backend systems
 All kinds of technologies used for integration

• Different deliverables
 Different rich client configurations
 Different standalone configurations
 Different server container setups

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Structure matters

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Dependencies

Managing dependencies within large systems
is one of the most critical success factors for
healthy object-oriented business applications

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

What kind of dependencies?

• Dependencies between:
 Individual classes and interfaces
 Packages
 Subsystems/Modules

• Dependencies of what kind?
 Uses
 Inherits
 Implements

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Experiences

“Less coupling, high cohesion”
is no theoretical blah

OSGi makes you think
about dependencies

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Observations when using OSGi

• Design flaws and structural problems often have a
limited scope
 Problems remain within single bundles
 No wide-spreading flaws

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Import-Package vs. Require-Bundle

• We used Require-Bundle a lot
• That was a very bad decision

• Why?

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

What is the difference?

• Require-Bundle
 Imports all packages of the bundle, including re-exported

bundle packages

• Import-Package
 Import just the package you need

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

What does it mean?

• Require-Bundle
 Defines a dependency on the producer
 Broad scope of visibility

• Import-Package
 Defines a dependency on what you need
 Doesn't matter where it comes from!

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

When to use what?

• Prefer using Import-Package
 Lighter coupling between bundles
 Less visibilities
 Eases refactoring

• Require-Bundle only when necessary:
 Higher coupling between bundles
 Use only for very specific situations:
 split packages

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Keep Things Private

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Bundle API

• What should you export from a bundle?
• The easy (stupid) way:
 Export everything

• That is a really bad idea:
 If everything is visible, everything will be used by someone
 Broad visibility
 High coupling between components

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Instead: Think about your APIs

• Export only the public API of a bundle
 Less is more
 Think about what is the API of a component
 API design is not easy

• Don’t export anything until there is a good reason for it
 Its cheap to change non-API code
 Its expensive to change API code

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Your Buddies are Your Enemies

Don’t use buddy loading to solve
all your dependency problems

mostly it is your fault
(structural problem, design flaws)

Use with care to workaround library
classloading problems

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Composing

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Structuring Bundles

Just having bundles is not enough

You still need an architectural view
You still need additional structures

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Your Bundles shouldn't end up like this

Go! Get some structure!

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

What we do

• Bundle rules in the small
 Separate UI and core
 Separate service implementations and interfaces
 Isolate backend connectors

• Bundle rules in the mid-size
 Access to resources via services only
 Access to backend systems via services only
 Technology-free domain model

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

What we do

• Bundle rules in the large
 Separate between domain features
 Separate between applications / deliverables
 Separate between platform and app-specific bundles

• Don’t be afraid of having a large number of bundles
 Mylyn
 Working Sets
 Platforms

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Shippable units

• Bundle sets form different products
 Different clients
 Different server-side apps

• Easy to deploy different apps, but not for free
• You need:
 Less bundle dependencies
 Pluggable units (adding stuff from outside)

• Configuration code is a bad smell

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Refactoring Bundles

“A good design today might be a bad one
tomorrow”

Refactor early, refactor often

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Don’t forget to test

• JUnit-Tests wherever you can
 (TDD preferred, of course)

• Don’t rely on the OSGi runtime

• Test bundle-internals?
 No, just the public API is good (black-box)
 Yes, I would like more tests (while-box)
 x-friends
 Fragments
 Separate source folders

 Having both is a good idea

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Extensions and/or OSGi Services

(borrowed from Peter Kriens)

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Experiences

• Extension Points are really useful and powerful
 Allows you to implement pluggable apps
 Decouples your system
 Forces Dependency Inversion
 Eases scaling up

• You can easily misuse them
 We used extension points for all kinds of things
 We used them statically
 We used them for N-to-one relationships

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi Services vs. Extension-Points

• Some things are like extensions
• Some things are like services

• Use the appropriate mechanism

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Dynamics

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Dynamics are hard

Its hard to build a really dynamic system,
you need to change your mindset

Think about dependencies
Think about services

Think about everything as of being dynamic

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Dynamics are hard

It’s even harder to turn a static system
into a dynamic one

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Integration

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Integration is easy

Integrating an OSGi system into an
existing environment is easy

OSGi runtimes are easy to start and to embed
Clear separation between inside and outside world

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Experiences

• Integrate existing rich client app into proprietary client
container
 Ugly boot-classpath additions like XML parser stuff
 Self-implemented extension model using classloaders in a

strange way
 Used a large number of libs that where not necessarily

compatible with the existing rich client app

• Integration went smoothly
 just launch your OSGi framework and you are (mostly)

done

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Integration can be hard

• Using existing libraries can be hard
 Sometimes they do strange classloader stuff
 Start to love ClassNotFoundException, it will be your best

friend for some time

• The Context-Classloader hell
 Some libs are using context-classloader
 OSGi has no meaning for context-classloader
 Arbitrary problems

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Experiences

• We got every (!) library we wanted to use to work
within our OSGi environment
 Rich-client on top of Equinox
 Server-app on Equinox
 Server-app embedded into Tomcat and Jetty using Servlet-

Bridge

• But it can cause some headaches at the beginning

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Build & Provisioning

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Build

• An automated server-side build is priceless
 PDE-Build
 Custom ANT-Build
 CruiseControl
 Hudson
 Unit-Tests
 PMD, Checkstyle, FindBugs, etc.

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Experiences

• Even though its server-side - it should be fast
 Long-running builds are a bad smell

• Produce ready-to-use packages
 Additional installation work is tedious and errorprone

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Provisioning

• We use p2, of course… - Just kidding…

• Used zipped install package
• Simple solutions to simple problems… ;-)

• Adopted existing self-implemented server-side update
mechanism
 But avoid tedious publishing steps of new builds

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Looking back

• Large OO system, grown over years
• Its still easy and fast to add/change features

• I think OSGi is a major reason…
• But why?

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi led us to…

• Thinking about structure all the time
 Avoids mistakes early (before the ugly beast grows)
 Less and defined dependencies
 No broken windows

• Good separation of concerns
• Dependency inversion & pluggable architecture
 easy to add features without changing existing parts

• Many small frameworks
 better than few overall ones

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions

Never again without OSGi

You will love it
You will hate it

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

And in the end its your best friend

Lessons Learned: 5 Years of Building Enterprise OSGi Applications | © 2009 Martin Lippert; made available under the EPL v1.0

• Questions and feedback welcome!

• Let us know if you need assistance!!!
• Visit us at our booth!!!

Martin Lippert: martin.lippert@it-agile.de

Thank you for your attention!

mailto:martin.lippert@it-agile.de�

	Lessons Learned: 5 Years of Building Enterprise OSGi Applications
	Overview
	Background
	Characteristics
	Structure matters
	Dependencies
	What kind of dependencies?
	Experiences
	Observations when using OSGi
	Import-Package vs. Require-Bundle
	What is the difference?
	What does it mean?
	When to use what?
	Keep Things Private
	Bundle API
	Instead: Think about your APIs
	Your Buddies are Your Enemies
	Composing
	Structuring Bundles
	Your Bundles shouldn't end up like this
	What we do
	What we do
	Shippable units
	Refactoring Bundles
	Don’t forget to test
	Extensions and/or OSGi Services
	Experiences
	OSGi Services vs. Extension-Points
	Dynamics
	Dynamics are hard
	Dynamics are hard
	Integration
	Integration is easy
	Experiences
	Integration can be hard
	Experiences
	Build & Provisioning
	Build
	Experiences
	Provisioning
	Conclusions
	Looking back
	OSGi led us to…
	Conclusions
	Foliennummer 45
	Thank you for your attention!

