
© 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license | April 23rd, 2008

Classloading and Type Visibility in OSGi

Martin Lippert
akquinet it-agile GmbH

martin.lippert@akquinet.de

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Overview

• Introduction to classloading
What is classloading?
How does classloading work?
What does classloading mean for daily development?

• Classloading in OSGi
What is different?
Dependency and Visibility
Advanced Classloading in OSGi

• Conclusions

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

What is Classloading?

• Classloaders are Java objects
• They are responsible for loading classes into the VM

Every class is loaded by a classloader into the VM
There is no way around

• Every class has a reference to its classloader object
myObject.getClass().getClassLoader()

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader API
public abstract class ClassLoader {

public Class<?> loadClass(String name)

public URL getResource(String name)
public Enumeration<URL> getResources(String name)
public InputStream getResourceAsStream(String name)

public final ClassLoader getParent()

public static URL getSystemResource(String name)
public static Enumeration<URL> getSystemResources(String name)
public static InputStream getSystemResourceAsStream(String name)
public static ClassLoader getSystemClassLoader()

...
}

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Implicit class loading

public class A {
public void foo() {

B b = new B();
b.sayHello();

}
}

causes the VM to load
class B using the
classloader of A

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Explicit class loading

public void foo() {
ClassLoader cl =

this.getClass().getClassLoader();
Class<?> clazz = cl.loadClass("A");
Object obj = clazz.newInstance();

...
}

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Hierarchical classloaders

• Classloaders typically have a parent classloader
Chained classloading

• If a classloader is invoked to load a class, it first calls
the parent classloader

Parent first strategy
This helps to prevent loading the same class multiple times

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader hierarchy

Classloader AClassloader A

Classloader BClassloader B

A.jarA.jar

Class AClass A

B.jarB.jar

Class BClass B

parent

loaderB.loadClass("A");

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type compatibility

Classloader AClassloader A

Classloader BClassloader B

A.jarA.jar

Class AClass A

B.jarB.jar

Class BClass B

parent
loaderA.loadClass("A");

Returns the same class object
as loaderB.loadClass("A")
Returns the same class object
as loaderB.loadClass("A")

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader AClassloader A

Classloader BClassloader B

A.jarA.jar

Class AClass A

A.jarA.jar

Class AClass A

B.jarB.jar

Class BClass B

B.jarB.jar

Class BClass B

parent

loaderB.loadClass("A");

Defining vs. Initiating classloader

Initiating loader

Defining loader

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type compatibility II

Classloader AClassloader A A.jarA.jar

Class AClass A

B.jarB.jar

Class BClass B

parent

Classloader B2Classloader B2
B.jarB.jar

Class BClass B

parent

Classloader B1Classloader B1

loaderB1.loadClass(“A”) == loaderB2.loadClass(“A”)
loaderB1.loadClass(“B”) != loaderB2.loadClass(“B”)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type compatibility III

Classloader AClassloader A A.jarA.jar

Class AClass A

B.jarB.jar

Class BClass B

parent

Classloader B2Classloader B2
B.jarB.jar

Class BClass B

parent

Classloader B1Classloader B1

Object b1 = loaderB1.loadClass(“B”).newInstance();

b1 !instanceof loaderB2.loadClass(“B”)

Remember: A class is identified by its name (including
the package name) AND its defining class loader !!!

Remember: A class is identified by its name (including
the package name) AND its defining class loader !!!

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type compatibility IV

Classloader AClassloader A A.jarA.jar

Class AClass A

B.jarB.jar

Class BClass B

parent

Classloader B2Classloader B2
B.jarB.jar

Class BClass B

parent

Classloader B1Classloader B1

public interface A {}public interface A {}

public class B implements A {}public class B implements A {}

A anA = loaderB1.loadClass(“B”).newInstance();
A anotherA = loaderB2.loadClass(“B”).newInstance();
anA = anotherA; (Assignment)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

The default setting

Bootstrap ClassloaderBootstrap Classloader

Extension ClassloaderExtension Classloader

System ClassloaderSystem Classloader

loads JVM classes (rt.jar)

loads classes from the
JRE ext folder

loads classes from your
application classpath

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Threads context classloader
Thread.currentThread().getContextClassLoader()
Thread.currentThread().setContextClassLoader(..)

• Typically used in libraries to access the context in
which the library is called

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader.loadClass vs. Class.forName

•Classloader.loadClass() caches the loaded class
object and returns always the same class object

This is done by the defining classloader
This ensures that each classloader loads the same class only
once

•Class.forName() calls the normal classloader
hierarchy to load the class (same happens as above)

But caches the class object within the initiating
classloader
In standard cases no problem but can be tricky in dynamic
environments

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloading is dynamic

• You can create classloaders at runtime
• You can trigger them to load a specific class

• For example:
What app/web servers do for hot deployment

• Some people say the classloading mechanism is the
only real innovation in the Java programming language

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloading in OSGi

• “OSGi is a classloading framework”

• Remember:
Dependencies between bundles

Import- and Export-Package, Require-Bundle
Dynamic Bundle Lifecycle

Install, Update, Uninstall bundles

• Realized via specialized classloading

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader per bundle

• One classloader per bundle
Controls what is visible from the bundle
Controls what is visible from other bundles

Bundle ABundle A

Class AClass A

Bundle BBundle B

Class BClass B

ClassloaderClassloader

ClassloaderClassloader

Bundle CBundle C

Class CClass C
ClassloaderClassloader

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloader per bundle

• Effects
No linear class path for your application anymore
Instead class path per bundle
No real parent hierarchy anymore

• Classloader parent setting
Default: Bootstrap classloader
Can be parameterized via system property

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Dependencies via delegation

Bundle ABundle A

Class AClass A

Bundle BBundle B

Class BClass B

Bundle CBundle C

Class CClass C

Export-Package: mypackageAExport-Package: mypackageA

Export-Package: mypackageC
Import-Package: mypackageA
Export-Package: mypackageC
Import-Package: mypackageA

Import-Package: mypackageA
Import-Package: mypackageC
Import-Package: mypackageA
Import-Package: mypackageC

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type Visibility I

Bundle ABundle A

Class AClass A

Bundle BBundle B

Class BClass B

Export-Package: mypackageAExport-Package: mypackageA

Import-Package: mypackageAImport-Package: mypackageA

A anA = new A();

A anA = new A();

class A is loaded only once by
bundle A (the bundles

classloader)

class A is loaded only once by
bundle A (the bundles

classloader)
class A is loaded only once by

bundle A (its classloader)
class A is loaded only once by

bundle A (its classloader)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type Visibility II

Bundle ABundle A

Class AClass A

Bundle BBundle B

Class BClass B

Export-Package: mypackageAExport-Package: mypackageA

Import-Package: mypackageAImport-Package: mypackageA

A anA = new A();

A anA = new A();

class is loaded
successfully

class is loaded
successfully

bundle B remains in state
“installed” (not resolved)
bundle B remains in state
“installed” (not resolved)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type Visibility III

Bundle ABundle A

Class AClass A

Bundle BBundle B

Class BClass B

Export-Package: mypackageAExport-Package: mypackageA

Import-Package: mypackageAImport-Package: mypackageA

A anA = new A();

A anA = new A();

class is loaded
successfully

class is loaded
successfully

ClassNotFoundExceptionClassNotFoundException

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type Compatibility revisited I

Bundle ABundle A

Class AClass A

Bundle BBundle B

Class BClass B

Export-Package: mypackageAExport-Package: mypackageA

Import-Package: mypackageAImport-Package: mypackageA

A anotherA = new A();

A anA = new A();

exactly the same typeexactly the same typeexactly the same typeexactly the same type

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type Compatibility revisited II

Bundle ABundle A

Class AClass A

Bundle BBundle B

Class BClass B

Export-Package:
mypackageA;version="1.0.0"
Export-Package:
mypackageA;version="1.0.0"

Import-Package:
mypackageA;version=“1.0.0"
Import-Package:
mypackageA;version=“1.0.0"

A anA = new A();

Bundle ABundle A

Class AClass A

Bundle CBundle C

Class CClass C

Export-Package:
mypackageA;version=“2.0.0"
Export-Package:
mypackageA;version=“2.0.0"

Import-Package:
mypackageA;version=“2.0.0"
Import-Package:
mypackageA;version=“2.0.0"

A anA = new A();

Completely different and incompatible typesCompletely different and incompatible typesCompletely different and incompatible typesCompletely different and incompatible types

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Type Compatibility revisited III
Bundle ABundle A

Type AType A

Bundle CBundle C

Class CClass C

Bundle BBundle B

Class BClass B public class B impl A {}public class B impl A {}

public class C impl A {}public class C impl A {}

public interface A {}public interface A {}

Bundle DBundle D

Class DClass D
A myA = createServiceA();

Static type of myA is A, dynamic type of
myA could be B or C

Static type of myA is A, dynamic type of
myA could be B or C

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

ClassNotFoundException

• Typical reasons for a ClassNotFoundException:
Dependency to declaring bundle not defined
Type is not visible (not exported)

• Dynamically generated classes
Proxies
CGLib
…

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Buddy loading I

• What happens if a library needs to load classes from
its clients?

e.g. persistence libraries?

• Cyclic dependencies are not allowed and maybe even
not what you want

• Equinox provides so called “Buddy Loading”

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Buddy loading II

org.hibernate
Bundle

org.hibernate
Bundle

Bundle ABundle A

Class AClass A

Eclipse-BuddyPolicy: registeredEclipse-BuddyPolicy: registered

Eclipse-RegisterBuddy:
org.hibernate

Eclipse-RegisterBuddy:
org.hibernate

A anA = new A();

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Allows org.hibernate bundle to
execute successfully
loadClass(“A”)

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Buddy loading III

• Important difference:
Buddy loading can load all classes from a buddy bundle
not only exported types

• Its just a workaround for libraries and other existing
code that does not behave correctly within the OSGi
world

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

The loading sequence

1. Try the parent for “java.” packages
2. Try the parent for boot delegation packages
3. Try to find it from imported packages
4. Try to find it from required bundles
5. Try to find it from its own class path
6. Try to find it from dynamic import
7. Try to find it via buddy loading

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

“High Performance Classloading”

• Classloading consumes a remarkable amount of time
at startup

• OSGi allows to highly optimize classloading
Finding the right class
Highly optimized implementations available

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Classloading Hooks

• Equinox provides a hook mechanism
To enhance and modify the behavior of the runtime

• Examples
Modify bytecode at load-time
Intercept bundle data access

• Eat your own dog food
Some Equinox features are implemented using those hooks
e.g. Eclipse-LazyStart

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Garbage Collection for Classloaders

• You could expect that the classloader of a bundle gets
garbage collected if the bundle is stopped or
uninstalled

• This is not automatically the case!!!

• You need to ensure that all objects from those classes
loaded by this classloader are no longer referenced

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

What does this mean?

• Bundle A provides an interface I and a registry for
objects of type I

• Bundle X has a class Y that implements I, creates
objects of type Y and registers those objects at the
registry

• If you uninstall X, you need to cut the references that
still exists in the registry of A.

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Conclusions

• Changing the viewpoint from the linear classpath to a
per-bundle classpath

• Clearly defined dependencies and visibilities
Real modularity
Classloading only implementation detail

• Use OSGi in a clean and correct way and you
never need to think about classloading at all

Classloading and Type Visibility in OSGi | © 2008 by Martin Lippert; made available under Creative Commons Att. Nc Nd 2.5 license

Thank you for your attention!

Q&A

Martin Lippert: martin.lippert@akquinet.de

