
Merciless Refactoring with Eclipse

Martin Lippert, Bernd Schiffer
it-agile GmbH

{martin.lippert, bernd.schiffer}@it-agile.de
http://www.it-agile.de/

JAX 2006, Wiesbaden

JAX 2006 Merciless Refactoring with Eclipse 2

Part 1: Daily Refactoring

� Part 1: Daily Refactoring
� Quick fixes
� Local refactorings
� Small refactorings

� Hands-on demonstrations

� Part 2: Large Refactorings
� Large refactorings
� Dependency management
� Tools to detect and control refactorings

� Some Demos

JAX 2006 Merciless Refactoring with Eclipse 3

Contents 1/2

� Refactoring – a short introduction

� The classics:
� Rename and Move

� Working with variables
� Extract Local Variable
� Convert Local Variable into Field

� Working with methods
� Extract Method
� Change Method Signature
� Inline Method

JAX 2006 Merciless Refactoring with Eclipse 4

Contents 2/2

� Working with types
� Extract Interface
� Infer Generic Type Arguments

� Combined refactorings:
� Inline Constructor

� Links and books

* The material provided here is based on Eclipse 3.1

JAX 2006 Merciless Refactoring with Eclipse 5

What is refactoring?

� „A change made to the internal
structure of software to make it
easier to unterstand and cheaper
to modify without changing its
observable behavior“

[Fowler 99]

JAX 2006 Merciless Refactoring with Eclipse 6

Refactoring mechanics

� [Fowler 99] describes detailed mechanics for each refactoring. These
mechanics allow developers to realize the refactoring in small steps
while reducing the danger of changing the behavior (introducing new
bugs)

� Nevertheless some refactorings are expensive to implement:
� Rename a method requires to adapt all references to this method manually

� The danger of introducing errors or changing the behavior still exists
� A good test suite is required to be as safe as possible

JAX 2006 Merciless Refactoring with Eclipse 7

Refactoring tools

� It is a good idea to automate as many refactorings as possible
� But: The tool must ensure that it does not change the behavior

of the system (or should warn about possible changes)

� Smalltalk Refactoring Browser was the first tool that automated
refactorings
� Written by John Brant & Don Roberts

� Meanwhile most Java IDEs include refactoring support.
� IDEs for other languages appear

JAX 2006 Merciless Refactoring with Eclipse 8

Our goal

� We want to refactor our systems by using the automated
refactorings of Eclipse – and nothing else !!!

� Let Eclipse ensure that the behavior of our system does not change
� Speed up the refactoring work

� Identify the circumstances where we should be attentive while using the
refactoring support of Eclipse

JAX 2006 Merciless Refactoring with Eclipse 9

Refactoring in practice

� Rather than talking about all the refactoring possibilities of Eclipse in
theory, I would like to present them interactively

� The slides are the reference
� You can find all refactorings explained in the slides
� But I will not show all slides here

JAX 2006 Merciless Refactoring with Eclipse 10

Refactoring: Rename

� Rename works on:
� Packages
� Classes
� Methods
� Parameters
� Variables

� Automatically adapts all references to those elements, including:
� File names
� Folder names
� Javadoc @param tags

JAX 2006 Merciless Refactoring with Eclipse 11

Attention: “Rename in file” is different

� The “Rename in file” feature is different from the rename refactoring:
� “Rename in file” automatically updates all references to the selected element

within the same file – and nothing else.
� Does not check whether the element is used from outside and does not update

those references

� Never use Rename in file for non-local elements – otherwise
you assume the risk of introducing errors and behavior
changes

� Use “Rename in file” only for local elements
� Local variables
� Parameters
� Private attributes
� Private methods
� Private inner classes

JAX 2006 Merciless Refactoring with Eclipse 12

Attention: Renaming of interface
methods

� If you rename a method in a class that implements identical methods
from two or more interfaces, all definitions of that method in all
implemented interfaces change (and therefore in all classes that
implement those interfaces)

getCustomer(int customerNo)

«Interface»
ICustomerService

getCustomer(int customerNo)

CustomerService

getCustomer(int customerNo)

«Interface»
IAccountService

getCustomer(int customerNo)

AccountService

Method rename here means also changing the method name here

JAX 2006 Merciless Refactoring with Eclipse 13

Rename and non-java sources ???

� The rename refactoring is able to find all references to a class name,
for example, in Java files
� By using the parser information

� What happens to class-references in non-java files?
� Extension definitions in plugin.xml files?
� JavaServer Pages?
� XML configuration files (e.g. Spring)?

JAX 2006 Merciless Refactoring with Eclipse 14

Rename and .xml files

� The rename refactoring of Eclipse is able to find class-references in any
kind of file (e.g. .xml) if the class if fully qualified

� This works for:
� plugin.xml
� Spring config files

� This does not work for:
� import-like class usages
� method names

JAX 2006 Merciless Refactoring with Eclipse 15

Refactoring: Move

� Works on:
� Classes
� Packages

� Automatically adapts all references to moved elements, including:
� Import statements
� Full-qualified class statements

JAX 2006 Merciless Refactoring with Eclipse 16

Refactoring: Extract Local Variable

� Allows you to extract a statement into a local variable at a single
keystroke

� Replaces all occurrences of the statement (within the same block)
with the new local variable

� Seldom used refactoring because most people are used to cut&paste
those statements into new variable declarations

� But this refactoring is extremely useful for everyday programming

JAX 2006 Merciless Refactoring with Eclipse 17

Extract Local Variable

JAX 2006 Merciless Refactoring with Eclipse 18

Refactoring: Convert Local Variable to
Field

� Allows you to convert a local variable into a field of the surrounding
class at a single keystroke

� Seldom used refactoring because most people are used to cut&paste
those declarations from the local context into the field declarations part
of a class

� But this refactoring makes
it a lot easier

JAX 2006 Merciless Refactoring with Eclipse 19

Refactoring: Extract Method

� Allows you to extract a code block into a separate method at a single
keystroke:
� Generates the necessary set of parameters
� Create the correct return type
� Warns you if more than one return value is necessary

� This is extremely useful to split large methods into smaller ones
� I also use this refactoring to experiment with different method

splittings

JAX 2006 Merciless Refactoring with Eclipse 20

Extract Method example

JAX 2006 Merciless Refactoring with Eclipse 21

Attention: Extract Method

� If you extract a method from an anonymous inner class that exists
inside a non-anonymous inner class, you have to take care:
� If a method in the non-anonymous inner class exists with the same signature as

your extracted method, Eclipse does not warn you about possible conflicts

� Extract the method into the anonymous inner class
� Everything is fine

� Extract the method into the non-anonymous inner class
� Results in compiler warnings because a method with the same signature already

exists in that class

� Extract the method into the surrounding class
� Results in possible behavior changes because the anonymous inner class calls

the method with the same signature from the non-anonymous inner class and
not the extracted one in the outer class

JAX 2006 Merciless Refactoring with Eclipse 22

Refactoring: Change Method Signature

� Allows you to change the signature of a method at a single click
� Rename the method itself
� Change the access modifier
� Add, remove, rename and reorder parameters (including default values for new

parameters)
� Change the type of the return value or parameters
� Add and remove exceptions

� Adapts all references to this method, if possible
� Interfaces as well as implementing classes
� Calls to this method

� This is one of the most powerful refactorings within Eclipse
(from my point of view)

JAX 2006 Merciless Refactoring with Eclipse 23

Refactoring: Change Method Signature

JAX 2006 Merciless Refactoring with Eclipse 24

Inline Considered Helpful

� Inline refactoring replaces the invocation of the method with the
method’s code

� Eclipse warns you in case of overridden methods

� Seems like this refactoring creates duplicated code

� Extremely useful to remove deprecated calls:
� Implement the old method by using the new methods
� Then the implementation of the old method looks like the client code of the new

method(s)
� Inline old method to replace all invocations of the old method by invocations of

the new method(s)

JAX 2006 Merciless Refactoring with Eclipse 25

Best Practices: Inline Method

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

...
String meinDokument = ...;
...
meinDrucker.drucke(meinDokument);
...

...
String meinDokument = ...;
...
meinDrucker.drucke(meinDokument);
...

JAX 2006 Merciless Refactoring with Eclipse 26

Best Practices: Inline Method

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

/**
* @deprecated use druckeDokument instead
*/

public void drucke (String dok) {
druckeDokument(new Dokument(dok));

}

public void druckeDokument (Dokument obj) {
... implementation ...

}

...
String meinDokument = ...;
...
meinDrucker.druckeDokument(new Dokument(meinDokument));
...

...
String meinDokument = ...;
...
meinDrucker.druckeDokument(new Dokument(meinDokument));
...

JAX 2006 Merciless Refactoring with Eclipse 27

Refactoring: Extract Interface

� Extract a new interface from an existing class very comfortable by
selecting the appropriate methods.

� The secret power of this refactoring is:
� Eclipse changes declarations in the client code from the class to the interface

type where possible
� You not just extract the interface type, you also use the new abstraction in the

client code right away

JAX 2006 Merciless Refactoring with Eclipse 28

Refactoring: Infer Generic Type
Arguments

JAX 2006 Merciless Refactoring with Eclipse 29

Advanced: Inline Constructor

� Problem: A constructor that is deprecated and uses this(..) to adapt
invocations to a new constructor.

� But we cannot inline the constructor since the inline refactoring is
allowed for methods only.

� Solution:
� 1. Introduce Factory for the deprecated constructor.
� 2. Replace the body of the factory (to use the new constructor)
� 3. Inline the factory method.

JAX 2006 Merciless Refactoring with Eclipse 30

Some advertisement ☺

� Best practices for performing
complex refactorings

� Covers:
� Short introduction to refactoring
� Architecture smells
� Large refactorings
� API-Refactorings
� Database-Refactorings
� Guest chapter: Finding and

analyzing architecture smells

� “War Stories” from Sven Gorts,
Berrin Ileri, Dierk König, Klaus
Marquardt, Jens-Uwe Pipka,
Markus Völter and Henning Wolf

JAX 2006 Merciless Refactoring with Eclipse 31

Other books

� Martin Fowler: Refactoring –
Improving the Design of Existing
Code, Addison-Wesley, 1999

� Joshua Kerievsky: Refactoring to
Patterns, Addison-Wesley, 2004

� William Wake: Refactoring
Workbook, Addison-Wesley, 2003.

� On the road:
� Ramnivas Laddad: Aspect Oriented

Refactoring, Addison-Wesley, 2006
� Scott W. Ambler, Pramodkumar J.

Sadalage: Refactoring Databases:
Evolutionary Database Design,
Addison-Wesley, 2006

JAX 2006 Merciless Refactoring with Eclipse 32

The end.

� Thank you for your attention. Feedback is welcome!
Martin Lippert: martin.lippert@it-agile.de
Bernd Schiffer: bernd.schiffer@it-agile.de

� Some interesting references:
� http://www.refactoring.com/: Maintained by Martin Fowler, contains a lot of

useful other references, articles, tools catalog, …
� http://www.refactoring.be/: Refactoring Thumbnails as a visualization for

refactorings
� http://groups.yahoo.com/group/refactoring: Refactoring mailing list at Yahoo

