
© 2006 by Martin Lippert, lippert@acm.org; made available under the EPL v1.0

Evolve Your RCP Application Architecture from
Small to Large

Dr. Frank Gerhardt
Gerhardt Informatics Kft.
fg@acm.org

Martin Lippert
it-agile GmbH
lippert@acm.org

2 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Outline

Evolutionary Design and Refactoring

The Elements of the Eclipse Architecture

Application-level Evolution

Plattform-level Evolution

3 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Start stupid and evolve – Kent Beck

Start with one, or a few, plug-ins
But don‘t end with one, or a few, plug-ins

Add features and products later

Add extensions points even later

Refactor
Don’t forget to improve

4 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Evolutionary Design

“Complex systems that work evolved from simple
systems that worked”

Grady Booch

5 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Evolutionary Design

What does it mean to develop an architecture incrementally from
small to large?

Start small
Start with a small architecture that matches the current design
needs, not more

Refactor if necessary
Adapt the architecture to new requirements

The architecture is subject to change

6 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

What is refactoring?

„A change made to the internal
structure of software to make it
easier to understand and cheaper
to modify without changing its
observable behavior“

[Fowler 99]

Think:

(2*4) + (3*4) = (2+3) * 4

Just with classes, or plug-ins

7 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Refactoring mechanics

[Fowler 99] describes detailed mechanics for each refactoring. These
mechanics allow developers to realize the refactoring in small steps
while reducing the danger of changing the behavior (introducing new
bugs)

Nevertheless some refactorings are expensive to implement:
Rename a method requires to adapt all references to this method
manually

The danger of introducing errors or changing the behavior still exists
A good test suite is required to be as safe as possible

8 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Refactoring tools

It is a good idea to automate as many refactorings as possible

But: The tool must ensure that it does not change the behavior
of the system (or should warn about possible changes)

Smalltalk Refactoring Browser was the first tool that automated
refactorings

Written by John Brant & Don Roberts

Meanwhile most Java IDEs include refactoring support.
IDEs for other languages appear

9 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Outline

Evolutionary Design and Refactoring

The Elements of the Eclipse Architecture

Application-level Evolution

Plattform-level Evolution

10 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Architectures of RCP applications

If we talk about evolutionary architecture of RCP applications, we
should mention:

The architecture of RCP applications is build out of plug-ins, not
just Java classes, interfaces and packages

What does this mean for doing refactorings?

11 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Extensions and Extension Points

Platform Runtime

C Debug

Rich Client Platform

Plug-in

C Debug
RCA

Extension

Extension Point

12 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Products, Features, and Plug-ins

Product

Feature

Plugin

Package

Fragm
ent

13 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Still Plug-ins, just bigger – maybe too big?
Plug-in

14 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Just Plug-ins, just more – „Ravioli“ architecture
Plug-in

15 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Structuring Plug-ins with Features
Plug-in

Feature

16 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Structuring Freatures with Products
Plug-in

Feature

Product

17 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

The Meta-Model of the Eclipse Architecture

Plug-inFeatureProduct

depends
contains

contains

depends

contains

All relationships are n:m

18 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Outline

Evolutionary Design and Refactoring

The Elements of the Eclipse Architecture

Application-level Evolution

Plattform-level Evolution

19 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Two different settings

You develop an application on top of RCP
You have all the code on your workspace

You have “just one” application

You have everything under control

You develop a platform on top of RCP
This platform is used by yourself and others to build applications
on top of it

You have one platform, but many applications

You don’t have control over the clients of your platform

© 2006 by Martin Lippert, lippert@acm.org; made available under the EPL v1.0

Application-Level Evolution

Good news: The application is completely
under your control

21 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

General OO design guidelines

General OO design guidelines apply to RCP applications as well

For example:
Don’t repeat yourself

Tell, don’t ask

Separation of Concerns

Liskov Substitution Principle

Many more…

22 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Pure Java refactorings for RCP applications

The automated pure Java refactorings are applicable for plug-in
based applications as well

This is an important fact

Eclipse updates all references in all plug-ins

But:
If you move classes or packages from one plug-in to the other:

References to those classes are updated
Plug-in dependencies are not updated

23 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Plug-in specific refactorings

Plug-ins may enforce additional refactorings on the architectural
level

What are the smells on the plug-in level?
Plug-in too large

Plug-in too small

Plug-in serves more than one purpose (DRY principle)

Change hotspots

…..

24 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Plug-in design guidelines

Separate API from internals
Separate core and UI implementation
Program to the API contract

Always have a client

Design for extensibility
Everything is a contribution
Think of the diversity rule

…

25 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Refactoring: Extract Plug-in

Smell:
Plug-in becomes too big

Plug-in serves more than one purpose

Solution:
Extract Plug-in

Mechanics:
Create new empty plug-in and let the original plug-in depend on it

Move classes into new plug-in

Re-export those classes, if necessary

26 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Refactoring: Extract Fragment

Similar to Extract-Plug-in but extracts a fragment

27 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Refactoring: Introduce Extension Point

Smell:
More and more features are added
Features are hard-coded
Extract-Plug-in would result in a cyclic dependency

Solution:
Introduce extension point

Mechanics:
Declare and define Extension-Point
Implement extension-point consumer
Move code from the plug-in to an extension of this new point

28 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

How Extension Points can Break Up Cyclic Dependencies

29 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

And more…

More base refactorings, for example:
Inline Plug-in

Inline Fragment

Remove Extension-Point

…

RCP refactorings, for example:
Split View

…

30 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Tool support

Would be nice to have automated refactoring support for this
kind of refactorings

Similar to automated Java refactorings (in Eclipse, for example)

But not yet available

31 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Preparing Ahead

Plan for an Update Site
Update Manger requires features

Create a top-level feature for each deployment type
Structure of top-level feature can be refactored later on

New top-level features can only be added with a hack
Code freeze issues

Introduce plug-ins and features a bit earlier than needed

Changes in the plug-in and feature structure are usually considered
dangerous

Fill in code later

32 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Outline

Evolutionary Design and Refactoring

The Elements of the Eclipse Architecture

Application-level Evolution

Plattform-level Evolution

© 2006 by Martin Lippert, lippert@acm.org; made available under the EPL v1.0

What does it mean to
have published APIs?

Plattform-Level Evolution

34 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Platform-Oriented Programming

No longer one large set of plug-ins

Instead similar to Eclipse:
Platform containing the general concepts and implementations

Applications or additional platforms build on top of it

35 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Evolving the Platform

Again: Start stupid and evolve !!!

Start with a few and/or small plug-ins

Refactoring: Move Plug-in
From applications into the platform

36 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Published APIs

The platform has an published API
Clients use this API to implement applications or additional plug-ins

Those clients are completely unknown by the platform

The API is published “for the world” (even in in-house projects a
possible situation)

37 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

The Challenge: Evolving published APIs

You would like to improve your code inside the platform over
time

This might also affect the published API (maybe the API itself
should be refactored)

This might create a huge effort on the client side to migrate to
this changed API

Clients get angry -> won’t use platform (or newer versions)
anymore

38 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Don‘t break your clients

API Binary Compatibility:
Pre-existing Client binaries must link and run with new releases
of the Component without recompiling.

Achieving API binary compatibility requires being sensitive to the
Java language's notion of binary compatibility.

Java Language Specification, Chapter 13).

http://java.sun.com/docs/books/jls/second_edition/html/binaryCom
p.doc.html#44872

39 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Obviously Breaking Changes

Rename/Move a type at the API (class or interface)

Rename a method
Add a method to an API interface

40 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Advanced Breaking Changes

Adding a method to an API class
Client may have subclassed the class

Client subclass might already contain such a method

Result: semantic clash

41 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Evolving APIs

http://www.eclipse.org/eclipse/development/java-api-evolution.html

API Prime Directive: When evolving the Component API
from release to release, do not break existing Clients.

42 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Extract Plug-in revisited

Published APIs need additional attention:
Changing package names difficult

Require-Bundle might not work anymore

Solution:
Re-export new plug-in by the old one

43 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

New APIs instead

One way to deal with evolving APIs is to keep the old API and
build a new API aside

Pros:
You are free to build a completely new designed API

Sometimes the only solution

Cons:
The number of APIs increases dramatically over time

The platform needs to support a lot of APIs

Hard to find the “right” API

44 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

@deprecated

Keep the old method in your API and create a new one
Forward from the old method to the new one (Once and Only
Once)
This is supported by Eclipse 3.2 directly

Use the @deprecated tag to tell the client what is old and what
is new

45 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Refactoring scripts

Eclipse 3.2 is able to record automated refactorings!!!

Platform developers record their refactorings at the API via
refactoring scripts

Those scripts are delivered to the client

The client can execute the refactoring script and get adapted to
the new platform version that way

46 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Don‘t be afraid of platform programming

Platform-based programming is…
… not easy

… not for free

But: A good platform has an unbelievable value for project
development

Applications on top of the platform look and feel the same

The can be developed a lot faster and lower costs

Can serve as a unification point

47 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Planning Ahead

A Facade Plug-in
Example: org.eclipse.ui, org.eclipse.core.runtime

A plug-in that has a numer of dependencies and re-exports all of
them

Clients only have to depend on the facade plug-in

Cliends are protected from refactorings behind the facade

48 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Martin Lippert, fg@frankgerhardt.com, lippert@acm.org;

Thank you for your attention!

Questions are welcome!!!

Further help and assistance:
Frank Gerhardt: fg@frankgerhardt.com

Martin Lippert: lippert@acm.org

