-

Evolve Your RCP Application Architecture from
Small to Large

Dr. Frank Gerhardt Martin Lippert
Gerhardt Informatics Kift. it-agile GmbH
fg@acm.org lippert@acm.org

ﬁ . " /.\
@ ARDT it-agile =
‘m/

© 2006 by Martin Lippert, lippert@acm.org; made available under the E_

@

Outline

» Evolutionary Design and Refactoring
» The Elements of the Eclipse Architecture
» Application-level Evolution

= Plattform-level Evolution

2 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Start stupid and evolve — Kent Beck

= Start with one, or a few, plug-ins
= But don‘t end with one, or a few, plug-ins

= Add features and products later

» Add extensions points even later

» Refactor
= Don't forget to improve

3 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

Evolutionary Design

“Complex systems that work evolved from simple
systems that worked”
Grady Booch

4 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhard_

D

Evolutionary Design

» What does it mean to develop an architecture incrementally from
small to large?

= Start small

= Start with a small architecture that matches the current design
needs, not more

» Refactor if necessary
= Adapt the architecture to new requirements

= The architecture is subject to change

5 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D
What is refactoring?

= ,A change made to the internal =
structure of software to make it 'R
easier to understand and cheaper AN EFACTORING
to modify without changing its IMPROVING THE DESIGN

observable behavior OF EXiSTING CODE
[Fowler 99]

MARTIN FOWLER
With Centributiss by Boent Beck, John Brant.,
William Opdyke, and Don Roberts

Foreword by Erich Gamma

Object Technology International Ing

Think:

JACOBSON
RUNBRUEN

(2*%4) + (3*4) = (2+3) * 4

ddedes habus Wl Rl Y

Just with classes, or plug-ins

6 | Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

-
Refactoring mechanics

» [Fowler 99] describes detailed mechanics for each refactoring. These
mechanics allow developers to realize the refactoring in small steps
while reducing the danger of changing the behavior (introducing new
bugs)

* Nevertheless some refactorings are expensive to implement:

= Rename a method requires to adapt all references to this method
manually

» The danger of introducing errors or changing the behavior still exists
» A good test suite is required to be as safe as possible

7 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

-
Refactoring tools

* |tis a good idea to automate as many refactorings as possible

But: The tool must ensure that it does not change the behavior
of the system (or should warn about possible changes)

Smalltalk Refactoring Browser was the first tool that automated
refactorings

= Written by John Brant & Don Roberts

Meanwhile most Java IDEs include refactoring support.
» |DEs for other languages appear

8 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

@

Outline

» Evolutionary Design and Refactoring
= The Elements of the Eclipse Architecture
» Application-level Evolution

= Plattform-level Evolution

9 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Architectures of RCP applications

= |f we talk about evolutionary architecture of RCP applications, we
should mention:

= The architecture of RCP applications is build out of plug-ins, not
just Java classes, interfaces and packages

» What does this mean for doing refactorings?

10 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

3

Extensions and Extension Points

Rich Client Platform

Platform Runtime

() Extension

W Extension Point

11 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

Products, Features, and Plug-ins

Product

D

Still Plug-ins, just bigger — maybe too big?

Plug-in

>

g J

13 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Just Plug-ins, just more — ,Ravioli” architecture

Plug-in

>

14 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Structuring Plug-ins with Features

Plug-in

15 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

aﬁiﬂkji

Structuring Freatures with Products

Plug-in
______i Feature) pococooog :r ___________ ooty i ______________
Product T S i

16 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Mab

@

The Meta-Model of the Eclipse Architecture

Product Feature Plug-in
contains
contains contains
8 : O depends

depends

All relationships are n:m

17 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

Q-

Outline

» Evolutionary Design and Refactoring
» The Elements of the Eclipse Architecture
= Application-level Evolution

= Plattform-level Evolution

18 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Two different settings

= You develop an application on top of RCP
= You have all the code on your workspace

* You have “just one” application

= You have everything under control

= You develop a platform on top of RCP

= This platform is used by yourself and others to build applications
on top of it

= You have one platform, but many applications

*= You don’t have control over the clients of your platform

19 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

@

Application-Level Evolution

Good news: The application is completely
under your control

© 2006 by Martin Lippert, lippert@acm.org; made available under the E_

-

General OO design guidelines

» General OO design guidelines apply to RCP applications as well

* For example:
= Don’t repeat yourself

Tell, don’t ask

Separation of Concerns

Liskov Substitution Principle

Many more...

21 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Pure Java refactorings for RCP applications

» The automated pure Java refactorings are applicable for plug-in
based applications as well

= This is an important fact

= Eclipse updates all references in all plug-ins

= But:
= |f you move classes or packages from one plug-in to the other:

= References to those classes are updated
* Plug-in dependencies are not updated

22 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Plug-in specific refactorings

» Plug-ins may enforce additional refactorings on the architectural
level

» What are the smells on the plug-in level?
» Plug-in too large
* Plug-in too small
= Plug-in serves more than one purpose (DRY principle)

= Change hotspots

23 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Plug-in design guidelines

Separate API from internals
» Separate core and Ul implementation
= Program to the API contract

Always have a client

Design for extensibility
= Everything is a contribution
Think of the diversity rule

24 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Refactoring: Extract Plug-in

= Smell:
» Plug-in becomes too big

» Plug-in serves more than one purpose

= Solution:
= Extract Plug-in

» Mechanics:
= Create new empty plug-in and let the original plug-in depend on it

= Move classes into new plug-in

» Re-export those classes, if necessary

25 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

@}f) =)=

Refactoring: Extract Fragment

= Similar to Extract-Plug-in but extracts a fragment

26 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Refactoring: Introduce Extension Point

= Smell:
= More and more features are added

» Features are hard-coded
» Extract-Plug-in would result in a cyclic dependency

= Solution:
» Introduce extension point

= Mechanics:
= Declare and define Extension-Point

* Implement extension-point consumer
= Move code from the plug-in to an extension of this new point

27 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

How Extension Points can Break Up Cyclic Dependencies

28

/" rcpsimple N

MyApplication
depends |mf.jl run()

1= myapplication

declares

/fi? application

N IPlatformRunnable
runy)

VA

\urg.eclipse.cure runtime /

Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

@

And more...

» More base refactorings, for example:
= [nline Plug-in
* [nline Fragment

= Remove Extension-Point

= RCP refactorings, for example:
= Split View

29 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Tool support

= Would be nice to have automated refactoring support for this
kind of refactorings

= Similar to automated Java refactorings (in Eclipse, for example)

= But not yet available

30 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Preparing Ahead

= Plan for an Update Site
» Update Manger requires features

= Create a top-level feature for each deployment type
= Structure of top-level feature can be refactored later on

= New top-level features can only be added with a hack

» Code freeze issues
» [ntroduce plug-ins and features a bit earlier than needed

= Changes in the plug-in and feature structure are usually considered
dangerous

= Fill in code later

31 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

@

Outline

» Evolutionary Design and Refactoring
» The Elements of the Eclipse Architecture
» Application-level Evolution

= Plattform-level Evolution

32 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Plattform-Level Evolution

What does it mean to
have published APIs?

© 2006 by Martin Lippert, lippert@acm.org; made available under the E_

-

Platform-Oriented Programming

» No longer one large set of plug-ins

» |Instead similar to Eclipse:
» Platform containing the general concepts and implementations

= Applications or additional platforms build on top of it

34 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

Q-

Evolving the Platform

» Again: Start stupid and evolve !!!
» Start with a few and/or small plug-ins

» Refactoring: Move Plug-in
= From applications into the platform

35 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

Published APIs

= The platform has an published API
= Clients use this API to implement applications or additional plug-ins

= Those clients are completely unknown by the platform

= The API is published “for the world” (even in in-house projects a
possible situation)

36 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

The Challenge: Evolving published APls

= You would like to improve your code inside the platform over
time
= This might also affect the published APl (maybe the API itself
should be refactored)

= This might create a huge effort on the client side to migrate to
this changed API

= Clients get angry -> won’t use platform (or newer versions)
anymore

37 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Don‘t break your clients

= API Binary Compatibility:
Pre-existing Client binaries must link and run with new releases
of the Component without recompiling.

= Achieving API binary compatibility requires being sensitive to the
Java language's notion of binary compatibility.

» Java Language Specification, Chapter 13).

= http://java.sun.com/docs/books/jls/second_edition/html/binaryCom
p.doc.html#44872

38 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

@

Obviously Breaking Changes

» Rename/Move a type at the API (class or interface)

= Rename a method
= Add a method to an API interface

39 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Advanced Breaking Changes

= Adding a method to an API class
= Client may have subclassed the class

= Client subclass might already contain such a method

= Result: semantic clash

40 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Evolving APls

API Prime Directive: When evolving the Component API
from release to release, do not break existing Clients.

%) Evolving Java-based APIs - Mozilla Firefox (=] E3]
Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hife 0

QZI ¢ L:\j - %‘ Q @ |E http: /v eclipse.orgfedipse fdevelopment,java-api-evolution.html Vl @ Go |@,| |

Evolving Java-based APIs

Jim des Rivieres, OTI

Revision history:

June 8, 2001 - revision 1.02 - Added note about breakage due to adding APl method to classes that
may be subclassed.

January 15, 2001 - revision 1.01 - Added suggestion about making obsolete hook methods final.
October 6, 2000 - revision 1.0

This document is about how to evolve Java-based APIs while maintaining compatibility with existing
client code. The main subjects covered are:

» APl Java Elements

* AP| Prime Directive

* Achieving API Contract Compalibility
* Achieving APl Binary Compalibility

Withaut loss of generality, we'll assume that there is a generic Component with a Component API,
with ane party providing the Component and contralling its APl The other party, or parties, write Client

s that oo tho T ampanont'c cona e thronah ite AD] Thic ic o wsn tunical arranasmont

Fertig

http://www.eclipse.org/eclipse/development/java-api-evolution.html

41 | Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt & Marti

-

Extract Plug-in revisited

= Published APIs need additional attention:
= Changing package names difficult

» Require-Bundle might not work anymore

= Solution:
» Re-export new plug-in by the old one

42 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

New APIs instead

= One way to deal with evolving APls is to keep the old API and
build a new API aside

* Pros:
* You are free to build a completely new designed API
» Sometimes the only solution

= Cons:
= The number of APIs increases dramatically over time
» The platform needs to support a lot of APIs
= Hard to find the “right” API

43 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

@deprecated

= Keep the old method in your APl and create a new one
» Forward from the old method to the new one (Once and Only

Once)
» This is supported by Eclipse 3.2 directly

& Rename Method x|

=Nl ke tContextDefinitio

¥ Update references

v Keep original method as delegate to renamed method
¥ Mark as deprecated

Prewvien = | | IR I Cancel |

» Use the @deprecated tag to tell the client what is old and what
IS new

44 | Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Refactoring scripts

Eclipse 3.2 is able to record automated refactorings!!!

Platform developers record their refactorings at the API via
refactoring scripts

» Those scripts are delivered to the client

» The client can execute the refactoring script and get adapted to
the new platform version that way

45 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Don‘t be afraid of platform programming

» Platform-based programming is...
= ... not easy

= .. not for free

= But: A good platform has an unbelievable value for project
development

= Applications on top of the platform look and feel the same
» The can be developed a lot faster and lower costs

= Can serve as a unification point

46 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

D

Planning Ahead

= A Facade Plug-in
= Example: org.eclipse.ui, org.eclipse.core.runtime

= A plug-in that has a numer of dependencies and re-exports all of
them

= Clients only have to depend on the facade plug-in
» Cliends are protected from refactorings behind the facade

47 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

Q-

Thank you for your attention!

= Questions are welcome!!!

» Further help and assistance:
» Frank Gerhardt: fg@frankgerhardt.com

= Martin Lippert: lippert@acm.org

48 Evolve your Architecture from Small to Large | © 2006 by Frank Gerhardt _

