Beyond Code Reuse: Adopting the Eclipse
Architecture

“Its More Than Just Code”

Dr. Frank Gerhardt Martin Lippert
Gerhardt Informatics Kift. it-agile GmbH
fg@acm.org lippert@acm.org

| ﬁ | . 7N
@'ﬁ.ﬁ,&s it-agile =
‘m/

© 2006 by Frank Gerhardt & Martin Lippert; made available under the E_

Goal

* You are about to decide for/against Eclipse as a
platform for your software

= We show you what you get

= We show you the potential, the games you can play with
Eclipse

* You have chosen Eclipse already (or it has been
chosen for you)

= We show you how to build you application consistent with
the Eclipse Architecture and use the potential

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhi

Agenda

" Introduction to the Eclipse Architecture:
what you need to know

* Applying the Principles of the Eclipse
Architecture

» Qutlook: Adopting the Eclipse Way: practices
and process

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Good News and Bad News

* For the developer
*Most of the architecture has been done for you

*You don‘t have to do it
* For the architect
*Most of the technical architecture has been done for you

=You don‘t have to do it

*You can concentrate on the domain-specific architecture

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Architectural Styles

* As a framework, Eclipse has it's own architectural
style
= Adopting means working with it, not against it or
ignoring it
= Rather: applying, embracing
= Non in the sense of adopting a child ;-)

* There are two major ingredients in the Eclipse
architecture ,above” the code level

= Design Patterns

= Eclipse House Rules

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Design Patterns

* Many design patterns have been applied in the design of
Eclipse

» Gamma, Helm, Johnson, Vlissides: Design Patterns, 1995
= Gamma, Beck: Contributing to Eclipse, 2003

" |t is essential to have an understanding of the
most commonly used design patterns

= Especially the Adapter pattern (Extension Obiject)

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Core Concepts

= Plug-in

= Fxtentsion

= Fxtension Point
* Fragment

= Feature

= Product

» Make sure you understand them before
getting started

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Extensions and Extension Points

() Extension Rich Client Platform

W Extension Point Platform Runtime

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Products, Features, and Plug-ins

Product

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Fr:

Eclipse House Rules: for Extenders

10

Contribution Rule: Everything is a contribution

Conformance Rule: Contributions must conform to expected interfaces
Sharing Rule: Add, don’t replace

Monkey See, Monkey Do Rule: Always start by copying the structure of a
similar plug-in

Relevance Rule: Contribute only when you can successfully operate
Integration Rule: Integrate, don't separate

Responsibility Rule: Clearly identify your plug-in as the source of problems
Program To API Contract Rule: Check and program to the Eclipse API
contract

gggl-l-y- :lep'E M There are quite a few rules, >
Adapt to IResou details on some in a mement
adapter for YOUr Guirnaii vujeus

Strata Rule: Separate language-neutral functionality from language-specific
functionality and separate core functionality from Ul functionality

User Continuity Rule: Preserve the user interface state across sessions

| Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lipp::-rt;rru_

Eclipse House Rule: for Enablers

11

Invitation Rule: Whenever possible, let others contribute to your
contributions

Lazy Loading Rule: Contributions are only loaded when they are needed
Safe Platform Rule: As the provider of an extension point, you must protect
yourself against misbehavior on the part of extenders

Fair Play Rule: All clients play by the same rules, even me

Explicit Extension: Declare explicitly where a platform can be extended
Diversity Rule: Extension points accept multiple extensions

Good Fences: When passing control outside your code, protect yourself

™. _01 _ \ W, W | O | I I - R |- P RS . SR R

User Arbitration ; Tt flons, let
the user decide w There are quite a few rules,

Explicit APl Rule : :

stability Rule: 0 details on some in a mement . the
rules

Defensive API Rule: Reveal only the APl in which you are confident, but be
prepared to reveal more API as clients ask for it

| Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lip_

Understand what is Available in the Code

* To go beyond code reuse, you should first be
a master of code reuse
" |t's >2.000.000 lines of code

= But you can focus on the public API

» |t should be clear that Eclipse is more than just
another API

= Avoid
= Not Invented Here" syndrome

» Re-inventing a Navigator, Properties view,
wizards

* They are already extensible

12 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhard

Reuse beyond RCP

» Reuse the architectural style even if you can't
iImplement on top of RCP

* For example:

= We build a large insurance application as a
Swing-Ul-based system

= We reused large parts of the Eclipse architecture
(what comes on the next slides)

13 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Agenda

* Introduction to the Eclipse Architecture: what
you need to know

= Applying the Principles of the Eclipse
Architecture

» Qutlook: Adopting the Eclipse Way: practices
and process

14 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Start stupid and evolve — Kent Beck

= Start with one, or a few, plug-ins
= But don‘t end with one, or a few, plug-ins

= Add features and products later

» Add extensions points even later

= Don‘t foget the evolve step ;-)
= Refactor

= See our talk about that topic tomorrow

15 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Use Plug-ins to Manage Dependencies

» Modularize your applications:
= Define components and APls

» Check consistency

= Manage dependencies

= Separate Ul and core modules:
= Don't put Ul stuff into core modules

= Reference core from Ul and not vice versa

» Use a plug-in for every library

16 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Reduce Circular Dependencies with Plug-ins

= Circular dependencies are
= OK
» Local, e.g. for domain classes
= BAD

» Global, between packages, layers, subsystems

» Plug-ins can not have circular dependencies
= E.g. user interface plug-in depends on domain plug-in ©

17 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Use Features and Products for Variants

= Group related plug-ins into features
» Define products in terms of features

= Group by
= functionality
» Target users: Inhouse, external
» Target platforms: desktop, PDA, kiosk
» QOperating system
= Language

= With[out] source

= Set up an automatic build for each feature (or product, see next
slide)

18 | Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Use Products for different Brandings

19

1 MP3 Manager

[T o (ST TN TR TR TR TR

4 v

ﬂ File System | Artists

—l-[z= EsikaitmusiclSaisse

MP3 MANAGER

An Eclipse RCP Demo Application

'-\
| /

s’

Cxpert ‘Window Help
logout -
=0 } Philip - La Grande Jatte.mp3 =0
A
ID3 Tags —
. |&%| Philippe Saisse - La Grande Jatte.mp3
FRIpPE 34155 ninuanu: Pearl.mp3 far: ExlkailmusiciSaisse\Philippe Saisse - La Grande
¢ & Sexy.mp3 Jatke.mp3
13
v 1ge - Miracle, mp Title: | La Grande Jatke
s Nephew.mp3 . — -
h Btticeli Eves Artist: | Philppe Saisse
- 15-MaMusern || album: | HalFusary 'til Davin
Track: |12
‘fear: |

(c) Copyright Kai Todter, Siemens AG. 2005. All rig

MP3 Manager

This RCP Application is just a demo
for the capabilities of the Eclipse Rich Client PlatForm,

Copyright Kai Tadter, Siemens &G

This software uses the mp3info Library (LGEPLY, wisit https v, ueberdosis, defjavafids.html
and some graphics From MediaPortal, visit http:fimediaportal, sourceforge. net

Feature Details | Plug-in Details | Configuration Details

Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Ger

Use Products for different Brandings

& Drange MP3 Manager

Datei Authentication Expert Fenster Hilfe
J Y J & J logout = looin
ﬂ Datei—Systeml Artisks ‘

[=]- = E:lkailmusiciSaisse
Philippe Saisse - La Grande Jatte.mp3
Philippe Saisse - Chihuahua Pearl.mp3 von; EikaitmusiclSaisse\Phiippe Saisse - La Grande Jatte.mp3
— Ky N

M P3 M A N A G E R Miracl Titel: ILa Grande Jatke

An Eclipse RCP Demo Application Kunstler: | Phiippe Saisse

= B8 & Philippe & - LaGrande Jatte.mp3 X = O

ID3 Tags

Albumn: | Halfraay il Dawn
- ¥ Songs: | 12

Jahr: |

Genre: I

[% About Orange MP3 Manager

Orange MP3 Manager
This RCP Application is just a demo
(c) Copyright Kai Todter, Siemens AG. 2005. All ﬁghl:’ ; for the capabilities of the

Eclipse Rich Client Platform.

Copryright kai Tadter, Siemens AG

This software uses the mp3info Library, visit REbpe e, ueberdosis, defjava)id3. hkml
and some graphics from MediaPortal, visit htkp:/fmediaportal sourceforge, net

Feature Details | Plug-in Details | Configuration Details

20 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerl

Keep Your Users Up-to-Date: Update Manager

* Prerequisite
= Package your application as features
= Provide an Update Site
» For the development branch: early adopters

» For the releases

= Keep them separate
» You are even better that the Eclipse team ;-)
» They start eating their own dogfood only just now

21 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Design for extensibility

= House rule: Invite extension

|dentify variable parts
Extract extension-points from those parts

= Make it flexible, but: don’t over-generalize

= QOpen architecture
» House rule: Safe Platform, Protect yourself
» Take adavantage of scalable platform, lazy loading
Domain-specific extension points
= Versicherungspolicen

= Parser fur Dateiformate, Dialekte, Versionen

22 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

The Holy Grail: Platform-Based
Development

» Think Platform:
= Extract a platform for your domain

= Build applications on top of this platform
= Be a platform provider for your internal or external customers
= Evolve the platform over time

= Experiences:
= In-house platform for life insurance applications

= A lot of domain-specific extension points

= Created a universal insurance workplace with highly integrated
applications

23 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Build to Last

= Be careful with API changes
= Keep your clients informed
= Know what you're doing

= Avoid accidential APl breakage where binary compatibity had been
an option

24 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by FrankGer_

Adopt Separating public and internal API

= Enforce this in the runtime

= Nice: re-exporting dependencies for larger sets of plug-ins
= E.g. org.eclipse.ui

= Ever wondered why your plug-in does not have a dependency
on org.eclipse.swt?

25 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Evolving APIs

API Prime Directive: When evolving the Component API
from release to release, do not break existing Clients.

%) Evolving Java-based APIs - Mozilla Firefox (=] E3]
Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hife 0

QZI ¢ L:\j - %‘ Q @ |E http: /v eclipse.orgfedipse fdevelopment,java-api-evolution.html Vl @ Go |@,| |

Evolving Java-based APIs

Jim des Rivieres, OTI

Revision history:

June 8, 2001 - revision 1.02 - Added note about breakage due to adding APl method to classes that
may be subclassed.

January 15, 2001 - revision 1.01 - Added suggestion about making obsolete hook methods final.
October 6, 2000 - revision 1.0

This document is about how to evolve Java-based APIs while maintaining compatibility with existing
client code. The main subjects covered are:

» APl Java Elements

* AP| Prime Directive

* Achieving API Contract Compalibility
* Achieving APl Binary Compalibility

Withaut loss of generality, we'll assume that there is a generic Component with a Component API,
with ane party providing the Component and contralling its APl The other party, or parties, write Client

s that oo tho T ampanont'c cona e thronah ite AD] Thic ic o wsn tunical arranasmont

Fertig

http://www.eclipse.org/eclipse/development/java-api-evolution.html

26 | Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Ger

One More Step: Go Even Beyond the
Architecture

= Adopt “The Eclipse Way”’:

= Nightly, integration, and release builds with a fixed schedule
» Rigorous testing using JUnit

= Weekly planning, 6-weekly milestones

» The Perpetual Beta: always be at release quality

= Get feedback from frequent milestones

» Transparent process

» Say what you do, do what you say. Keep your promises
= Open plans, open issues list (Bugzilla)

27 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank _

Thank you for your attention!

Question?

© 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL_

