
© 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

“Its More Than Just Code”

Beyond Code Reuse: Adopting the Eclipse
Architecture

Dr. Frank Gerhardt
Gerhardt Informatics Kft.
fg@acm.org

Martin Lippert
it-agile GmbH
lippert@acm.org

2 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Goal

You are about to decide for/against Eclipse as a
platform for your software

We show you what you get

We show you the potential, the games you can play with
Eclipse

You have chosen Eclipse already (or it has been
chosen for you)

We show you how to build you application consistent with
the Eclipse Architecture and use the potential

3 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Agenda

Introduction to the Eclipse Architecture:
what you need to know

Applying the Principles of the Eclipse
Architecture

Outlook: Adopting the Eclipse Way: practices
and process

4 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Good News and Bad News

For the developer
Most of the architecture has been done for you

You don‘t have to do it
For the architect

Most of the technical architecture has been done for you

You don‘t have to do it

You can concentrate on the domain-specific architecture

5 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Architectural Styles

As a framework, Eclipse has it‘s own architectural
style
Adopting means working with it, not against it or
ignoring it

Rather: applying, embracing

Non in the sense of adopting a child ;-)
There are two major ingredients in the Eclipse
architecture „above“ the code level

Design Patterns

Eclipse House Rules

6 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Design Patterns

Many design patterns have been applied in the design of
Eclipse

Gamma, Helm, Johnson, Vlissides: Design Patterns, 1995
Gamma, Beck: Contributing to Eclipse, 2003

It is essential to have an understanding of the
most commonly used design patterns

Especially the Adapter pattern (Extension Object)

7 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Core Concepts

Plug-in
Extentsion
Extension Point
Fragment
Feature
Product

Make sure you understand them before
getting started

8 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Extensions and Extension Points

Platform Runtime

C Debug

Rich Client Platform

Plug-in

C Debug
RCA

Extension

Extension Point

9 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Products, Features, and Plug-ins

Product

Feature

Plugin

Package

Fragm
ent

10 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Eclipse House Rules: for Extenders

Contribution Rule: Everything is a contribution
Conformance Rule: Contributions must conform to expected interfaces
Sharing Rule: Add, don’t replace
Monkey See, Monkey Do Rule: Always start by copying the structure of a
similar plug-in
Relevance Rule: Contribute only when you can successfully operate
Integration Rule: Integrate, don't separate
Responsibility Rule: Clearly identify your plug-in as the source of problems
Program To API Contract Rule: Check and program to the Eclipse API
contract
Other… Rule: Make all contributions available, but put those that don't
typically apply to the current perspective in an Other... dialog
Adapt to IResource Rule: Whenever possible, define an IResource
adapter for your domain objects
Strata Rule: Separate language-neutral functionality from language-specific
functionality and separate core functionality from UI functionality
User Continuity Rule: Preserve the user interface state across sessions

There are quite a few rules,
details on some in a mement

11 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Eclipse House Rule: for Enablers

Invitation Rule: Whenever possible, let others contribute to your
contributions
Lazy Loading Rule: Contributions are only loaded when they are needed
Safe Platform Rule: As the provider of an extension point, you must protect
yourself against misbehavior on the part of extenders
Fair Play Rule: All clients play by the same rules, even me
Explicit Extension: Declare explicitly where a platform can be extended
Diversity Rule: Extension points accept multiple extensions
Good Fences: When passing control outside your code, protect yourself
User Arbitration Rule: When there are multiple applicable contributions, let
the user decide which one to use
Explicit API Rule: separate the API from internals
Stability Rule: Once you invite someone to contribute, don’t change the
rules
Defensive API Rule: Reveal only the API in which you are confident, but be
prepared to reveal more API as clients ask for it

There are quite a few rules,
details on some in a mement

12 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Understand what is Available in the Code

To go beyond code reuse, you should first be
a master of code reuse
It‘s >2.000.000 lines of code

But you can focus on the public API
It should be clear that Eclipse is more than just
another API

Avoid
„Not Invented Here“ syndrome
Re-inventing a Navigator, Properties view,
wizards

They are already extensible

13 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Reuse beyond RCP

Reuse the architectural style even if you can‘t
implement on top of RCP

For example:
We build a large insurance application as a
Swing-UI-based system

We reused large parts of the Eclipse architecture
(what comes on the next slides)

14 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Agenda

Introduction to the Eclipse Architecture: what
you need to know

Applying the Principles of the Eclipse
Architecture

Outlook: Adopting the Eclipse Way: practices
and process

15 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Start stupid and evolve – Kent Beck

Start with one, or a few, plug-ins
But don‘t end with one, or a few, plug-ins

Add features and products later

Add extensions points even later
Don‘t foget the evolve step ;-)
Refactor

See our talk about that topic tomorrow

16 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Plug-ins to Manage Dependencies

Modularize your applications:
Define components and APIs

Check consistency

Manage dependencies

Separate UI and core modules:
Don‘t put UI stuff into core modules

Reference core from UI and not vice versa

Use a plug-in for every library

17 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Reduce Circular Dependencies with Plug-ins

Circular dependencies are
OK

Local, e.g. for domain classes
BAD

Global, between packages, layers, subsystems

Plug-ins can not have circular dependencies
E.g. user interface plug-in depends on domain plug-in ☺

18 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Features and Products for Variants

Group related plug-ins into features
Define products in terms of features

Group by
functionality

Target users: Inhouse, external

Target platforms: desktop, PDA, kiosk

Operating system

Language

With[out] source

Set up an automatic build for each feature (or product, see next
slide)

19 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Products for different Brandings

20 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Products for different Brandings

21 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Keep Your Users Up-to-Date: Update Manager

Prerequisite
Package your application as features

Provide an Update Site
For the development branch: early adopters

For the releases

Keep them separate
You are even better that the Eclipse team ;-)

They start eating their own dogfood only just now

22 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Design for extensibility

House rule: Invite extension

Identify variable parts
Extract extension-points from those parts

Make it flexible, but: don’t over-generalize

Open architecture
House rule: Safe Platform, Protect yourself

Take adavantage of scalable platform, lazy loading
Domain-specific extension points

Versicherungspolicen

Parser für Dateiformate, Dialekte, Versionen

23 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

The Holy Grail: Platform-Based
Development

Think Platform:
Extract a platform for your domain
Build applications on top of this platform
Be a platform provider for your internal or external customers
Evolve the platform over time

Experiences:
In-house platform for life insurance applications
A lot of domain-specific extension points
Created a universal insurance workplace with highly integrated
applications

24 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Build to Last

Be careful with API changes

Keep your clients informed

Know what you’re doing
Avoid accidential API breakage where binary compatibity had been
an option

25 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Adopt Separating public and internal API

Enforce this in the runtime

Nice: re-exporting dependencies for larger sets of plug-ins
E.g. org.eclipse.ui

Ever wondered why your plug-in does not have a dependency
on org.eclipse.swt?

26 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Evolving APIs

http://www.eclipse.org/eclipse/development/java-api-evolution.html

API Prime Directive: When evolving the Component API
from release to release, do not break existing Clients.

27 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

One More Step: Go Even Beyond the
Architecture

Adopt “The Eclipse Way”:

Nightly, integration, and release builds with a fixed schedule

Rigorous testing using JUnit

Weekly planning, 6-weekly milestones

The Perpetual Beta: always be at release quality

Get feedback from frequent milestones

Transparent process
Say what you do, do what you say. Keep your promises
Open plans, open issues list (Bugzilla)

© 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Thank you for your attention!

Question?

