
© 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

“Its More Than Just Code”

Beyond Code Reuse: Adopting the Eclipse
Architecture

Dr. Frank Gerhardt
Gerhardt Informatics Kft.
fg@acm.org

Martin Lippert
it-agile GmbH
lippert@acm.org

2 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Goal

�You are about to decide for/against Eclipse as a
platform for your software
� We show you what you get

� We show you the potential, the games you can play with
Eclipse

�You have chosen Eclipse already (or it has been
chosen for you)
� We show you how to build you application consistent with

the Eclipse Architecture and use the potential

3 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Agenda

� Introduction to the Eclipse Architecture:
what you need to know

�Applying the Principles of the Eclipse
Architecture

�Outlook: Adopting the Eclipse Way: practices
and process

4 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Good News and Bad News

� For the developer
�Most of the architecture has been done for you

�You don‘t have to do it
� For the architect
�Most of the technical architecture has been done for you

�You don‘t have to do it

�You can concentrate on the domain-specific architecture

5 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Architectural Styles

� As a framework, Eclipse has it‘s own architectural
style
� Adopting means working with it, not against it or

ignoring it
� Rather: applying, embracing

� Non in the sense of adopting a child ;-)
� There are two major ingredients in the Eclipse

architecture „above“ the code level
� Design Patterns

� Eclipse House Rules

6 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Design Patterns

� Many design patterns have been applied in the design of
Eclipse

� Gamma, Helm, Johnson, Vlissides: Design Patterns, 1995
� Gamma, Beck: Contributing to Eclipse, 2003

� It is essential to have an understanding of the
most commonly used design patterns
� Especially the Adapter pattern (Extension Object)

7 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Core Concepts

�Plug-in
�Extentsion
�Extension Point
� Fragment
� Feature
�Product

�Make sure you understand them before
getting started

8 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Extensions and Extension Points

Platform Runtime

C Debug

Rich Client Platform

Plug-in

C Debug
RCA

Extension

Extension Point

9 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Products, Features, and Plug-ins

Product

Feature

Plugin

Package

Fragm
ent

10 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Eclipse House Rules: for Extenders

� Contribution Rule: Everything is a contribution
� Conformance Rule: Contributions must conform to expected interfaces
� Sharing Rule: Add, don’t replace
� Monkey See, Monkey Do Rule: Always start by copying the structure of a

similar plug-in
� Relevance Rule: Contribute only when you can successfully operate
� Integration Rule: Integrate, don't separate
� Responsibility Rule: Clearly identify your plug-in as the source of problems
� Program To API Contract Rule: Check and program to the Eclipse API

contract
� Other… Rule: Make all contributions available, but put those that don't

typically apply to the current perspective in an Other... dialog
� Adapt to IResource Rule: Whenever possible, define an IResource

adapter for your domain objects
� Strata Rule: Separate language-neutral functionality from language-specific

functionality and separate core functionality from UI functionality
� User Continuity Rule: Preserve the user interface state across sessions

There are quite a few rules,
details on some in a mement

11 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Eclipse House Rule: for Enablers

� Invitation Rule: Whenever possible, let others contribute to your
contributions

� Lazy Loading Rule: Contributions are only loaded when they are needed
� Safe Platform Rule: As the provider of an extension point, you must protect

yourself against misbehavior on the part of extenders
� Fair Play Rule: All clients play by the same rules, even me
� Explicit Extension: Declare explicitly where a platform can be extended
� Diversity Rule: Extension points accept multiple extensions
� Good Fences: When passing control outside your code, protect yourself
� User Arbitration Rule: When there are multiple applicable contributions, let

the user decide which one to use
� Explicit API Rule: separate the API from internals
� Stability Rule: Once you invite someone to contribute, don’t change the

rules
� Defensive API Rule: Reveal only the API in which you are confident, but be

prepared to reveal more API as clients ask for it

There are quite a few rules,
details on some in a mement

12 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Understand what is Available in the Code

� To go beyond code reuse, you should first be
a master of code reuse
� It‘s >2.000.000 lines of code
� But you can focus on the public API
� It should be clear that Eclipse is more than just

another API
�Avoid
� „Not Invented Here“ syndrome
� Re-inventing a Navigator, Properties view,

wizards
� They are already extensible

13 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Reuse beyond RCP

�Reuse the architectural style even if you can‘t
implement on top of RCP

� For example:
� We build a large insurance application as a

Swing-UI-based system

� We reused large parts of the Eclipse architecture
(what comes on the next slides)

14 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Agenda

� Introduction to the Eclipse Architecture: what
you need to know

�Applying the Principles of the Eclipse
Architecture

�Outlook: Adopting the Eclipse Way: practices
and process

15 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Start stupid and evolve – Kent Beck

� Start with one, or a few, plug-ins
� But don‘t end with one, or a few, plug-ins

� Add features and products later

� Add extensions points even later
� Don‘t foget the evolve step ;-)
� Refactor

� See our talk about that topic tomorrow

16 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Plug-ins to Manage Dependencies

� Modularize your applications:
� Define components and APIs

� Check consistency

� Manage dependencies

� Separate UI and core modules:
� Don‘t put UI stuff into core modules

� Reference core from UI and not vice versa

� Use a plug-in for every library

17 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Reduce Circular Dependencies with Plug-ins

� Circular dependencies are
� OK

� Local, e.g. for domain classes
� BAD

� Global, between packages, layers, subsystems

� Plug-ins can not have circular dependencies
� E.g. user interface plug-in depends on domain plug-in ☺

18 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Features and Products for Variants

� Group related plug-ins into features
� Define products in terms of features

� Group by
� functionality

� Target users: Inhouse, external

� Target platforms: desktop, PDA, kiosk

� Operating system

� Language

� With[out] source

� Set up an automatic build for each feature (or product, see next
slide)

19 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Products for different Brandings

20 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Use Products for different Brandings

21 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Keep Your Users Up-to-Date: Update Manager

� Prerequisite
� Package your application as features

� Provide an Update Site
� For the development branch: early adopters

� For the releases

� Keep them separate
� You are even better that the Eclipse team ;-)

� They start eating their own dogfood only just now

22 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Design for extensibility

� House rule: Invite extension

� Identify variable parts
� Extract extension-points from those parts

� Make it flexible, but: don’t over-generalize

� Open architecture
� House rule: Safe Platform, Protect yourself

� Take adavantage of scalable platform, lazy loading
� Domain-specific extension points

� Versicherungspolicen

� Parser für Dateiformate, Dialekte, Versionen

23 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

The Holy Grail: Platform-Based
Development

� Think Platform:
� Extract a platform for your domain
� Build applications on top of this platform
� Be a platform provider for your internal or external customers
� Evolve the platform over time

� Experiences:
� In-house platform for life insurance applications
� A lot of domain-specific extension points
� Created a universal insurance workplace with highly integrated

applications

24 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Build to Last

� Be careful with API changes

� Keep your clients informed

� Know what you’re doing
� Avoid accidential API breakage where binary compatibity had been

an option

25 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Adopt Separating public and internal API

� Enforce this in the runtime

� Nice: re-exporting dependencies for larger sets of plug-ins
� E.g. org.eclipse.ui

� Ever wondered why your plug-in does not have a dependency
on org.eclipse.swt?

26 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Evolving APIs

http://www.eclipse.org/eclipse/development/java-api-evolution.html

API Prime Directive: When evolving the Component API
from release to release, do not break existing Clients.

27 Beyond Code Reuse: Adopting the Eclipse Architecture | © 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

One More Step: Go Even Beyond the
Architecture

� Adopt “The Eclipse Way”:

� Nightly, integration, and release builds with a fixed schedule

� Rigorous testing using JUnit

� Weekly planning, 6-weekly milestones

� The Perpetual Beta: always be at release quality

� Get feedback from frequent milestones

� Transparent process
� Say what you do, do what you say. Keep your promises
� Open plans, open issues list (Bugzilla)

© 2006 by Frank Gerhardt & Martin Lippert; made available under the EPL v1.0

Thank you for your attention!

Question?

