
© 2009 by Martin Lippert; made available under the EPL v1.0 | October 6th, 2009

OSGi on the Server

Martin Lippert (it-agile GmbH)
lippert@acm.org

mailto:lippert@acm.org
mailto:lippert@acm.org

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Overview

• OSGi in 5 minutes
• Apps on the server (today and tomorrow)

• Dynamics in OSGi
• Dynamics on the Server

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSG – What?

• OSGi™:
 „A dynamic module system for Java“

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is …

• … a module system for Java that allows the definition
of …
 Modules (called „bundles“),
 Visibility of the bundle contents (public-API vs. private-API)
 Dependencies between modules
 Versions of modules

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is …

• … dynamic
 Bundles can be installed, started, stopped, uninstalled and

updated at runtime

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is …

• … service oriented
 Bundles can publish services (dynamically)
 Bundles can find and bind to services through a service registry
 The runtime allows services to appear and disappear at runtime

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

What does OSGi look like? (Low Level)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Implementations

• Open source implementations
 Eclipse Equinox (http://www.eclipse.org/equinox/)
 Apache Felix (http://cwiki.apache.org/FELIX/index.html)
 Knopflerfish (http://www.knopflerfish.org/)
 ProSyst mBedded Server Equinox Edition (http://

www.prosyst.com/products/osgi_se_equi_ed.html)

• Commercial implementations
 ProSyst (http://www.prosyst.com/)
 Knopflerfish Pro (http://www.gatespacetelematics.com/)

(not necessarily complete)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi in Action

• Eclipse
 SDK, RCP, RT, …

• Desktop
 RCP-Apps, widely adopted throughout the industry
 Swing-based enterprise apps

• Mobile
 Starting to gain interest (again)
 Sprint Titan platform (mobile phones)

• Server?
 Hm…

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Server app settings

• No UI
 Running standalone or inside an app server
 Often managed environment (container)
 Serves as back-end

• Web UI
 Running inside a web server
 Many different frameworks and languages

 GWT, Grails, Spring WebFlow, RAP, JSF, Lift, JavaScript, REST,
…

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Managed environment and OSGi?

• The web- or app-server manages the environment and
has a very special view on the deployable app
 Servet/JSP API, WAR files, …
 EJB spec, EAR files, …
 Runtime environment

• How does OSGi conform to this?
 JAR’d modules (bundles)
 Runtime environment

• Who is the boss?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

The OSGi Way

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Ready to use

• Choose an OSGi runtime
 Equinox, Felix, …

• Choose a web container
 Jetty, Tomcat

• Choose an extender mechanism
 PAX Web Extender
 Spring DM

• Go!

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Plain old WAR files?

• Add an OSGi manifest to the WAR file
 And it becomes an OSGi bundle

• Deploy the WAR file into the runtime
 It’s a bundle like all other bundles from the runtime

perspective

• Infrastructure takes care of connecting the WAR
bundle with the running container
 Extender pattern

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Modularity

• Reduce the scope of the WAR files
 Just the UI parts

• Extract functionality into separate bundles
• Extract libs into separate bundles

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Isolation

• If all bundles live in the same space, what about
application isolation?
 Can be good
 Can be bad

• We need an additional abstraction for isoloation
 SpringSource dm Server introduces proprietary construct
 OSGi spec will introduce something in the future (called

Composite Bundles?)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Existing servers

• Interesting: Most app servers are built on top of OSGi
 WebSphere, Glassfish, SpringSource dm Server, etc.
 But not all of them expose this to the app
 Implementation detail only

• The trend: Moving towards more OSGi options
 Having the server built on top of OSGi
 Letting apps be deployed as OSGi bundles
 SpringSource dm Server is the most advanced product in this

area

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

The Migration Way

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Too many limitations

• Bridge is tiny
• OSGi HTTP Service is old

 Servlet API 2.1
 No filters, no listeners, …

• Need to do JSP compiling from inside

• Just for the migration phase

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions for now…

• Most app servers don’t support OSGi app deployment
directly
 SpringSource dm Server and Jonas are the glory exceptions
 The other servers are still working on it

• The future belongs to:
 OSGi Web Service (RFC 66)
 OSGi JEE Bindings

• Server side OSGi is still a bit bleeding edge, but
possible and promising

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is dynamic

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Wouldn‘t it be cool for server apps…

• To have real modularity?

• To update only what you really changed?
• To update only small parts, not the whole app?
• To update without downtime?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Deployment unit:
 Bundle = JAR + additional manifest headers

• Supports dynamic scenarios (during runtime)
 Update
 Installation
 Deinstallation

Dynamic OSGi applications

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• "Wow - OSGi does dynamic install, uninstall and
update of bundles, this is cool…"
 I don’t need to take care of dynamics anymore
 I don’t need to think about this at all
 Everything is done automatically under the hood
 Objects are changed/migrated and references to objects are

managed all automatically
 Huge bulk of magic

• This is all wrong!!!

The first impressions

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

If its all magic, why this?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• OSGi controls the lifecycle of bundles
 It allows you to install, uninstall and update bundles at

runtime
 It gives you feedback on all those actions
 But it does not change any objects or references for you

 "No magic"

• OSGi gives you the power to implement dynamic
applications

• How you use this power is up to you

The basic idea

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

What is the problem?

• Bundles have dependencies
 e.g. package or service dependencies

• Dependencies have to be handled with respect to
the dynamic behavior!

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Package Dependencies

• Export of packages with Export-Package
• Import of packages via Import-Package or Require-

Bundle

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Bundle-Lifecycle

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Installing

• Makes a Bundle persistently available in the OSGi
Framework
 The Bundle is assigned a unique Bundle identifier (long)
 The Bundle State is set to INSTALLED
 The Bundle will remain in the OSGi Framework until explicitly

uninstalled

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Resolving

• Wires bundles by matching imports to exports
• Resolving may occur eagerly (after installation) or

lazily
• There is no API for resolving
• After resolving -> Bundle is in state RESOLVED

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Uninstall

• … removes a Bundle from the OSGi Framework
• The Bundle State is set to UNINSTALLED
• If the Bundle is an exporter: Existing wires will remain

until
 the importers are refreshed or
 the OSGi Framework is restarted

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Update and Refresh

• Update:
 Reads in the Bundle again
 If the Bundle is an exporter:

Existing wires will remain until the
importers are refreshed or the OSGi
Framework is restarted

• Refresh:
 All the bundle dependencies will be resolved again

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

What does this mean?

• Update or uninstall of bundles can lead to stale
package references

• Refresh -> restart of the bundles

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Just modularizing into bundles with clearly defined
package dependencies is not enough!

• Think about dynamics while building the system
• Think even more about dependencies

We need to re-think designs

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Only import packages that are really used/needed
• Use Import-Package rather Require-Bundle
• Only use Require-Bundle when it comes to split-

packages
 This is the unfortunately the case in many bundles of the

Eclipse platform!

• -> Reduce coupling

Good Practices: Less Dependencies

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Good Practice: OSGi Services

• The way to deal with dynamics

• Reduce coupling:
 Split between interface and implementation
 Lookup implementation at runtime
 Dependency inversion

• And always keep in mind: Services can come and
go at any time
 You need to program against this from the beginning
 Respect dynamics

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• But be careful:
 If you lookup a service implementation, you get the direct

reference to that object
 If the implementing bundle goes away, you need to be careful

not to keep this object referenced

• ServiceListener / ServiceTracker help you
 ServiceListener: calls you back if something changes
 ServiceTracker: listens to service listener events for you (less

code than using service listeners manually)

ServiceListener / ServiceTracker

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Declarative Services
 Part of the OSGi specification, declarative description of services

with XML
• Spring Dynamic Modules / Blueprint Service

 Spring goes dynamic with help of OSGi http://
www.springframework.org/osgi

• iPojo
 “Original” DI framework for OSGi
 http://ipojo.org

• Guice - Peaberry
 Guice: Performant, lightweight DI Framework
 Peaberry: Extension of Guice for OSGi
 http://code.google.com/p/peaberry/

Declarative Approaches

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Use a ServiceTracker
 Don’t do all the service getting manually
 Service tracker help you with dynamically coming and going

services

• Better: Use declarative approaches!
 Either DS or Spring DM
 Both help you with service dependencies and dependency

injection

Good Practices: Using Services

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Dynamics on the Server…

• Not much different to general OSGi dynamics, right?
 Install, uninstall, update bundles
 The less package dependencies the better
 Use services to deal with dynamics

• Harder to program, but additional abstractions help
 Declarative approaches

• Sounds nice!!!

• But…

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Challenges

• Works mostly fine for things without state
 stateless services

• Does that mean stateless web apps?
 Interesting… ;-)

• What about…
 Long-living transactions?
 Session state?
 Caches?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Session state

• The case:
 Put an object into a session
 Update the bundle that provided the type
 Retrieve the object from the session

• What happens?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Ough…

• Types are not compatible across bundle updates
• Leaking classloaders

• Only primitives in sessions

ClassCastExc
eption !!!

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions

• Modularity is good
 You can implement real sustainable and flexible architectures

• Dynamics is good
 Allows you fine-grained updates while you keep going

• Both are not for free
 New structures, new designs, new challenges

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions cont.

• OSGi on the server is not without pain
 Leading edge technology

• OSGi as the base infrastructure is the way to go
 Many promising solutions
 You are lucky when you can control your setting

• The programming model of the future
 from my point of view… :-)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Thank you for your attention!

• Questions and feedback welcome!

• Martin Lippert:
lippert@acm.org
www.martinlippert.org
twitter.com/martinlippert

mailto:lippert@acm.org
mailto:lippert@acm.org
http://www.martinlippert.org/
http://www.martinlippert.org/
http://www.twitter.com/martinlippert
http://www.twitter.com/martinlippert

