
© 2009 by Martin Lippert; made available under the EPL v1.0 | October 6th, 2009

OSGi on the Server

Martin Lippert (it-agile GmbH)
lippert@acm.org

mailto:lippert@acm.org
mailto:lippert@acm.org

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Overview

• OSGi in 5 minutes
• Apps on the server (today and tomorrow)

• Dynamics in OSGi
• Dynamics on the Server

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSG – What?

• OSGi™:
 „A dynamic module system for Java“

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is …

• … a module system for Java that allows the definition
of …
 Modules (called „bundles“),
 Visibility of the bundle contents (public-API vs. private-API)
 Dependencies between modules
 Versions of modules

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is …

• … dynamic
 Bundles can be installed, started, stopped, uninstalled and

updated at runtime

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is …

• … service oriented
 Bundles can publish services (dynamically)
 Bundles can find and bind to services through a service registry
 The runtime allows services to appear and disappear at runtime

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

What does OSGi look like? (Low Level)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Implementations

• Open source implementations
 Eclipse Equinox (http://www.eclipse.org/equinox/)
 Apache Felix (http://cwiki.apache.org/FELIX/index.html)
 Knopflerfish (http://www.knopflerfish.org/)
 ProSyst mBedded Server Equinox Edition (http://

www.prosyst.com/products/osgi_se_equi_ed.html)

• Commercial implementations
 ProSyst (http://www.prosyst.com/)
 Knopflerfish Pro (http://www.gatespacetelematics.com/)

(not necessarily complete)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi in Action

• Eclipse
 SDK, RCP, RT, …

• Desktop
 RCP-Apps, widely adopted throughout the industry
 Swing-based enterprise apps

• Mobile
 Starting to gain interest (again)
 Sprint Titan platform (mobile phones)

• Server?
 Hm…

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Server app settings

• No UI
 Running standalone or inside an app server
 Often managed environment (container)
 Serves as back-end

• Web UI
 Running inside a web server
 Many different frameworks and languages

 GWT, Grails, Spring WebFlow, RAP, JSF, Lift, JavaScript, REST,
…

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Managed environment and OSGi?

• The web- or app-server manages the environment and
has a very special view on the deployable app
 Servet/JSP API, WAR files, …
 EJB spec, EAR files, …
 Runtime environment

• How does OSGi conform to this?
 JAR’d modules (bundles)
 Runtime environment

• Who is the boss?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

The OSGi Way

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Ready to use

• Choose an OSGi runtime
 Equinox, Felix, …

• Choose a web container
 Jetty, Tomcat

• Choose an extender mechanism
 PAX Web Extender
 Spring DM

• Go!

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Plain old WAR files?

• Add an OSGi manifest to the WAR file
 And it becomes an OSGi bundle

• Deploy the WAR file into the runtime
 It’s a bundle like all other bundles from the runtime

perspective

• Infrastructure takes care of connecting the WAR
bundle with the running container
 Extender pattern

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Modularity

• Reduce the scope of the WAR files
 Just the UI parts

• Extract functionality into separate bundles
• Extract libs into separate bundles

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Isolation

• If all bundles live in the same space, what about
application isolation?
 Can be good
 Can be bad

• We need an additional abstraction for isoloation
 SpringSource dm Server introduces proprietary construct
 OSGi spec will introduce something in the future (called

Composite Bundles?)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Existing servers

• Interesting: Most app servers are built on top of OSGi
 WebSphere, Glassfish, SpringSource dm Server, etc.
 But not all of them expose this to the app
 Implementation detail only

• The trend: Moving towards more OSGi options
 Having the server built on top of OSGi
 Letting apps be deployed as OSGi bundles
 SpringSource dm Server is the most advanced product in this

area

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

The Migration Way

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Too many limitations

• Bridge is tiny
• OSGi HTTP Service is old

 Servlet API 2.1
 No filters, no listeners, …

• Need to do JSP compiling from inside

• Just for the migration phase

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions for now…

• Most app servers don’t support OSGi app deployment
directly
 SpringSource dm Server and Jonas are the glory exceptions
 The other servers are still working on it

• The future belongs to:
 OSGi Web Service (RFC 66)
 OSGi JEE Bindings

• Server side OSGi is still a bit bleeding edge, but
possible and promising

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

OSGi is dynamic

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Wouldn‘t it be cool for server apps…

• To have real modularity?

• To update only what you really changed?
• To update only small parts, not the whole app?
• To update without downtime?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Deployment unit:
 Bundle = JAR + additional manifest headers

• Supports dynamic scenarios (during runtime)
 Update
 Installation
 Deinstallation

Dynamic OSGi applications

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• "Wow - OSGi does dynamic install, uninstall and
update of bundles, this is cool…"
 I don’t need to take care of dynamics anymore
 I don’t need to think about this at all
 Everything is done automatically under the hood
 Objects are changed/migrated and references to objects are

managed all automatically
 Huge bulk of magic

• This is all wrong!!!

The first impressions

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

If its all magic, why this?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• OSGi controls the lifecycle of bundles
 It allows you to install, uninstall and update bundles at

runtime
 It gives you feedback on all those actions
 But it does not change any objects or references for you

 "No magic"

• OSGi gives you the power to implement dynamic
applications

• How you use this power is up to you

The basic idea

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

What is the problem?

• Bundles have dependencies
 e.g. package or service dependencies

• Dependencies have to be handled with respect to
the dynamic behavior!

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Package Dependencies

• Export of packages with Export-Package
• Import of packages via Import-Package or Require-

Bundle

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Bundle-Lifecycle

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Installing

• Makes a Bundle persistently available in the OSGi
Framework
 The Bundle is assigned a unique Bundle identifier (long)
 The Bundle State is set to INSTALLED
 The Bundle will remain in the OSGi Framework until explicitly

uninstalled

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Resolving

• Wires bundles by matching imports to exports
• Resolving may occur eagerly (after installation) or

lazily
• There is no API for resolving
• After resolving -> Bundle is in state RESOLVED

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Uninstall

• … removes a Bundle from the OSGi Framework
• The Bundle State is set to UNINSTALLED
• If the Bundle is an exporter: Existing wires will remain

until
 the importers are refreshed or
 the OSGi Framework is restarted

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Update and Refresh

• Update:
 Reads in the Bundle again
 If the Bundle is an exporter:

Existing wires will remain until the
importers are refreshed or the OSGi
Framework is restarted

• Refresh:
 All the bundle dependencies will be resolved again

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

What does this mean?

• Update or uninstall of bundles can lead to stale
package references

• Refresh -> restart of the bundles

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Just modularizing into bundles with clearly defined
package dependencies is not enough!

• Think about dynamics while building the system
• Think even more about dependencies

We need to re-think designs

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Only import packages that are really used/needed
• Use Import-Package rather Require-Bundle
• Only use Require-Bundle when it comes to split-

packages
 This is the unfortunately the case in many bundles of the

Eclipse platform!

• -> Reduce coupling

Good Practices: Less Dependencies

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Good Practice: OSGi Services

• The way to deal with dynamics

• Reduce coupling:
 Split between interface and implementation
 Lookup implementation at runtime
 Dependency inversion

• And always keep in mind: Services can come and
go at any time
 You need to program against this from the beginning
 Respect dynamics

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• But be careful:
 If you lookup a service implementation, you get the direct

reference to that object
 If the implementing bundle goes away, you need to be careful

not to keep this object referenced

• ServiceListener / ServiceTracker help you
 ServiceListener: calls you back if something changes
 ServiceTracker: listens to service listener events for you (less

code than using service listeners manually)

ServiceListener / ServiceTracker

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Declarative Services
 Part of the OSGi specification, declarative description of services

with XML
• Spring Dynamic Modules / Blueprint Service

 Spring goes dynamic with help of OSGi http://
www.springframework.org/osgi

• iPojo
 “Original” DI framework for OSGi
 http://ipojo.org

• Guice - Peaberry
 Guice: Performant, lightweight DI Framework
 Peaberry: Extension of Guice for OSGi
 http://code.google.com/p/peaberry/

Declarative Approaches

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

• Use a ServiceTracker
 Don’t do all the service getting manually
 Service tracker help you with dynamically coming and going

services

• Better: Use declarative approaches!
 Either DS or Spring DM
 Both help you with service dependencies and dependency

injection

Good Practices: Using Services

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Dynamics on the Server…

• Not much different to general OSGi dynamics, right?
 Install, uninstall, update bundles
 The less package dependencies the better
 Use services to deal with dynamics

• Harder to program, but additional abstractions help
 Declarative approaches

• Sounds nice!!!

• But…

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Challenges

• Works mostly fine for things without state
 stateless services

• Does that mean stateless web apps?
 Interesting… ;-)

• What about…
 Long-living transactions?
 Session state?
 Caches?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Session state

• The case:
 Put an object into a session
 Update the bundle that provided the type
 Retrieve the object from the session

• What happens?

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Ough…

• Types are not compatible across bundle updates
• Leaking classloaders

• Only primitives in sessions

ClassCastExc
eption !!!

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions

• Modularity is good
 You can implement real sustainable and flexible architectures

• Dynamics is good
 Allows you fine-grained updates while you keep going

• Both are not for free
 New structures, new designs, new challenges

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Conclusions cont.

• OSGi on the server is not without pain
 Leading edge technology

• OSGi as the base infrastructure is the way to go
 Many promising solutions
 You are lucky when you can control your setting

• The programming model of the future
 from my point of view… :-)

JAOO 2009 - OSGi on the Server | © 2009 Martin Lippert; made available under the EPL v1.0

Thank you for your attention!

• Questions and feedback welcome!

• Martin Lippert:
lippert@acm.org
www.martinlippert.org
twitter.com/martinlippert

mailto:lippert@acm.org
mailto:lippert@acm.org
http://www.martinlippert.org/
http://www.martinlippert.org/
http://www.twitter.com/martinlippert
http://www.twitter.com/martinlippert

