
The daily software 
engineering life

- How to be prepared -

Martin Lippert, VMware
mlippert@vmware.com

@martinlippert

mailto:mlippert@vmware.com
mailto:mlippert@vmware.com


Martin Lippert

Lead of Spring Developer Tools at VMware
Founder of it-agile GmbH

Developer, Architect, Coach, Technical Lead



- 1 -
Software Engineering

Fundamentals



Writing something that runs is easy
Writing good software is hard



Essential:
Programming Languages

Algorithms
Data Structures



The „old“ parts:
the difference between ArrayList and LinkedList?

how does a HashMap work?
how does a relational database look like?

The „new“ parts:
how does MapReduce works?

what about distributed and messaging systems?
what are key/value stores, document and graph dbs?



O(n)



Concurrency
is becoming more and more important



Deep understanding necessary

e.g.
Who knows how the Java Memory Model works?

What does „notify()“ mean?
What is garbage collection?

How does it affect my programming?



Parallelism
is becoming more and more important



Different thinking necessary

e.g.
parallel vs. optimized non-parallel algorithms

distribution - latency - redundancy - fault tolerance



„comments lie - code doesn‘t“



Modularity
Dependency Management

remember?

don‘t let your code look like this...



SOLID
principles

Single responsibility principle
Open/closed principle

Liskov substitution principle
Interface segregation principle

Dependency inversion principle

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Open/closed_principle
http://en.wikipedia.org/wiki/Open/closed_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)


- 2 -
Domain Driven Engineering



!Knowing the technology is essential
- 

but it is not enough



Is the software correct?

But what does it mean?
Correct?



You need to understand

the domain,
the problem,

 and the context (the „why“)



Agile Software 
Development

Extreme Programming
Scrum

Kanban

- Inspect and adapt -



- 3 -
Daily Engineering



Working with existing code

reading and understanding
refactoring code
regression testing



Test-Driven Development
Red - Green - Refactor



Programming in small steps
for all kinds of problems



„What you don‘t ship
doesn‘t exist“



Continuous...

Integration
Delivery

Deployment



DevOps



must read...



Thank you very much!

QA

Martin Lippert
mlippert@vmware.com

@martinlippert

mailto:mlippert@vmware.com
mailto:mlippert@vmware.com

