
© 2009 by Martin Lippert and Jeff McAffer; made available under the EPL v1.0

OSGi Best Practices

Martin Lippert
lippert@acm.org

Jeff McAffer
jeff@eclipsesource.com

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Context

• Client apps using:
 Swing, Hibernate, JDO, JDBC, JNI, SOAP, a lot of Apache

stuff, JUnit, FIT, Spring DM, Jetty, CICS-Adaptor, …
• Server apps using:

 JDO, Hibernate, SOAP, REST, Tomcat, Spring DM, CICS-
Adaptor, HTTP, a lot of custom libs, Memcached

• Eclipse platforms and frameworks including:
 Equinox, IDE, RCP, p2 and various RT projects

• OSGi expert groups
• Educating and mentoring people in the real world

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Don’t program OSGi

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Program your application

• Use POJO
• Keep your business logic clean
• Programming practices to make gluing easy
• Dependency injection to allow composition
• Separation of concerns

• Benefits
 Delay packaging decisions
 Increased deployment flexibility

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Separate concerns

• Creation
 Zero-arg constructors
 Light-weight construction

• Initialization
 Enable setter injection
 Support clearing if that makes sense
 Defer work to lifecycle

• Lifecycle
 Startup and shutdown
 Restrict context required by lifecycle
 Handle dynamics

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Solutions composed of POJOs

• Bundle POJOs as needed
• Glue together using

 Use Declarative Services
 iPOJO
 BluePrint Services
 …

• Use insulating layers to keep OSGi out of your code

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Structure matters

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Dependencies

Managing dependencies within large systems
is one of the most critical success factors for
healthy object-oriented business applications

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

What kind of dependencies?

• Dependencies between:
 Individual classes and interfaces
 Packages
 Subsystems/Modules

• Dependencies of what kind?
 Uses
 Inherits
 Implements

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Don’t shoot the messenger

OSGi

Module Factory

Around here our policy is to shoot the messenger!

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

“Low coupling, high cohesion”
Not just a nice idea

OSGi makes you think
about dependencies

It does not create them!

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Observations when using OSGi

• Design flaws and structural problems often have a
limited scope
 Problems remain within single bundles
 No wide-spreading flaws

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Take just what you need

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Import-Package vs. Require-Bundle

• Require-Bundle
 Imports all packages of the bundle, including re-exported

bundle packages
• Import-Package

 Import just the package you need

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

The Consequences

• Require-Bundle
 Defines a dependency on the producer
 Broad scope of visibility

• Import-Package
 Defines a dependency on what you need
 Doesn't matter where it comes from!

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

When to use what?

• Prefer using Import-Package
 Lighter coupling between bundles
 Less visibilities
 Eases refactoring

• Require-Bundle only when necessary:
 Higher coupling between bundles
 Use only for very specific situations:

 split packages

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Version management

• Version number management is essential
• Depending on a random version is pointless
• Failing to manage version numbers undermines

consumers

• Import-Package  package version management
• Require-Bundle  bundle version management

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Keep Things Private

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

API

• API is a contract with between producer and consumer
 Prerequisites
 Function
 Consequences
 Durability

• Key to effective modularity

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Bundle API

• What should you export from a bundle?
• The easy way:

 Blindly export everything

• That is a really bad idea:
 No contract was defined
 Consumers have no guidance
 Broad visibility
 High coupling between components

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Producers: Think about your APIs

• Export only what consumers need
 Less is more
 Think about the API of a component
 API design is not easy

• Don’t export anything until there is a good reason for it
 Its cheap to change non-API code
 Its expensive to change API code

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Consumers: Think about what you’re doing

• Stay in bounds
• If you can’t do something, perhaps

 Use a different component
 Use the component differently
 Work with the producer to cover your use-case

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Informed Consent

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Composing

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Structuring Bundles

Just having bundles is not enough

You still need an architectural view
You still need additional structures

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Your Bundles shouldn't end up like this

Go! Get some structure!

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Guidelines

• Bundle rules in the small
 Separate UI and core
 Separate client and server and common
 Separate service implementations and interfaces
 Isolate connectors

• Bundle rules in the mid-size
 Access to resources via services only
 Access to backend systems via services only
 Technology-free domain model

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Guidelines

• Bundle rules in the large
 Separate between domain features
 Separate between applications / deliverables
 Separate between platform and app-specific bundles

• Don’t be afraid of having a large number of bundles
 Mylyn
 Working Sets
 Platforms

• Cohesive packaging eases refactoring

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Products

• Group bundles to form different products
 Different clients
 Different server-side apps

• Easy to deploy different apps, but not for free
• You need:

 Minimal bundle dependencies
 Pluggability (adding stuff from outside)

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Features for Macro-level Modularity

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Conclusions

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Looking back

• Large OO systems grow over years
• Its easy and fast to add/change features

• OSGi is a major reason…
• But why?

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

OSGi leds us to…

• Thinking about structure all the time
 Avoids mistakes early (before the ugly beast grows)
 Less and defined dependencies
 No broken windows

• Good separation of concerns
• Dependency injection & pluggable architecture

 Easy to add features without changing existing parts
• Many small frameworks

 Better than few overall ones

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Conclusions

Never without OSGi

You will love it
You will hate it

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

In the end its your best friend

OSGi Best Practices | © 2009 Martin Lippert and Jeff McAffer; made available under the EPL v1.0

Sources of more information

OSGi and Equinox book
http://equinoxosgi.org

Toast @ Eclipse
http://wiki.eclipse.org/Toast

