An AspectJ-enabled Eclipse Runtime Engine

- Demonstration at AOSD 04 -

BN R BNHE B iy sems

Martin Lippert
lippert@acm.org
www.martinlippert.com

Motivation

s Use Eclipse 3.0 RCP to develop enterprise applications
s Use Aspectd to improve modularity

= What happens if we want to use both techniques to
develop applications?
— Especially to modularize cross-plugin pointcuts

Demo at AOSD 2004

Example

P
gy,
class Line { 4
private Point pl, p2;
PLl“B“Q(:
Point getPl() { return pl; }
Point getP2() { return p2; }
void setPl (Point pl) { aspect DisplayUpdating ({
this.pl = pl;
} pointcut move (FigureElement figElt):
void setP2(Point p2) { target (figElt) &&
this.p2 = p2; (call (void FigureElement.moveBy (int, int) ||
} call (void Line.setPl (Point)) ||
} call (void Line.setP2 (Point)) |
|

call (void Point.setX(int))
call (void Point.setY¥Y (int)))

class Point {

Q private int x = 0, y = 0; after (FigureElement fe) returning: move (fe) ({
ds? Display.update (fe) ;
S int getX() { return x; } }
dy int getY¥() { return y; } }

void setX (int x) {
this.x = x;

}

void setY¥ (int y) {
this.y = y;

} } Example taken from the AspectJ Tutorial

Demo at AOSD 2004

Design Alternatives

= Recompile the complete system with Aspectd (ajc)
— to weave an aspect into the whole system

= Weave the complete system once at startup-time
— using the -injar option of AspectJ

= Weave (and re-weave) classes when necessary
— using load-time bytecode weaving

)

| chose this alternative in order to be as
compatible as possible with the Eclipse
ideas

Demo at AOSD 2004

Solution: A load-time weaving runtime

m The basic idea:

Let the Eclipse runtime weave aspects into plugins at
load-time

Demo at AOSD 2004

Implementation

- load-time weaving -

aspect1.aj

aspect2.aj \
_/\ ajc (compile - woven — ;-l:r\:: tvhl\g
_ e & weave) bytecode
Sasshievs —
/'
aspect1.aj = ajc (compile compiled Java Vi

with Eclipse

aspect2.a)) s> only) bytecode \ runtime
weaves

W\ | / each single
compiled class at

classBjava) =—— javac ‘ bytecode load-time
jav -ti
_y o y

_dlassCjava) load time weaving

Demo at AOSD 2004

Implementation

- aspect contribution -

= Load-time weaving within the Eclipse runtime:

— Weaving runtime needs to know all aspects that should be
woven into

— Solution:
« Weaver plugin provides an extension point for aspects
* Plugins can contribute aspects via extensions

<extension
id="monitorruntime"
name="monitorruntime"
point="org.aspectj.weavingruntime.aspects">
<aspect
class="com.ibm.eclipse.monitor.aspect.MonitorAspect">
</aspect>
</extension>

Demo at AOSD 2004

Implementation

- weaving inside the runtime -

= Problem:
— load-time weaving has to happen at class-loading time
= Solution:
— inject load-time bytecode modification into the Eclipse runtime

Aspectd 1.1 bytecode weaving
implementation on a per class base

Eclipse Platform

runtime

Demo at AOSD 2004

Implementation

- reusing weaver API from AspectJ -

s Bytecode weaving plugin uses the weaver API from the
Aspectd 1.1 implementation

— No additional effort to implement aspect weaving
— All improvements of Aspectd 1.2 can be re-used directly
— Complete Aspectd language can be used

Demo at AOSD 2004

Hooking into the runtime

= Eclipse 2.1.x:
— Moadification of original runtime plugins needed
— But still a fully compatible runtime

s Eclipse 3.0:

— New OSGi-based runtime is a lot more flexible for this kind of
extensions

— Load-time bytecode modification can be implemented in separate
plugin (via a specialized OSGi framework adaptor)

— Dynamiclmport-Feature can be used to handle additional
dependencies between plugins

Demo at AOSD 2004

Demo

= Using the Eclipse IDE 3.0 itself as the application enhanced via
aspects

ol

Universe ™. _Trace | Memaoty | Cuskam |

u|:u:|ate.‘-:-;r:e
T HEAECEIRSESERCIFECT

configurator: el

. te::-::te-flitu:-'r'

With special thanks to Chris Laffra
for the Monitor plugin

Demo at AOSD 2004

More Use Cases
- within and beyond the Eclipse RCP -

= Analyzing - e.g.:
— Find out where objects of a specific type are created

— Find out where they are created depending on a specific control
flow

= Enhancing - e.g.:

— Do something every time a plugin is started, maybe depending
on the control flow

= Modifying external libraries - e.g.:

— Replace calls to the system class loader with calls to the class
loader of the plugin

Demo at AOSD 2004

Status of Work

= Implementation available for
— Eclipse 2.1.2
— 3.0M4 (old runtime)
— 3.0M8 (new OSGi-based runtime)

s Features
— Open Source
— Load-time weaving for Aspectd 1.1 (and upcoming 1.2)
— Caching for woven classes (to improve startup time)

= Availability

— More information: www.martinlippert.com
— If you are interested, please contact me: lippert@acm.org

Demo at AOSD 2004

The Next Steps

= Improvements
— Performance
— Footprint
— Code refactorings

= Dynamic Plugins

— New runtime features install/update/uninstall of plugins at
runtime

— What happens to aspects being installed/updated/uninstalled?
— Solution: “run-time like” weaving for AspectJ

= Debugging
— debugging within the PDE

Demo at AOSD 2004

Thank you for your attention !!!

- Questions highly welcome -

Special thanks to the Eclipse Runtime Team and the AspectJ-
Team for their help and assistance implementing the prototype

Martin Lippert
lippert@acm.org
www.martinlippert.com

Demo at AOSD 2004

