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Motivation

Use Eclipse 3.0 RCP to develop enterprise applications
Use AspectJ to improve modularity

What happens if we want to use both techniques to 
develop applications?
– Especially to modularize cross-plugin pointcuts



Demo at AOSD 2004

PLUGIN A
PLUGIN A

PL
UG

IN
 B

PL
UG

IN
 B

PLUGIN CPLUGIN C

Example

aspect DisplayUpdating {
pointcut move(FigureElement figElt):

target(figElt) && 
(call(void FigureElement.moveBy(int, int) ||
call(void Line.setP1(Point))             ||
call(void Line.setP2(Point))             ||
call(void Point.setX(int))               ||
call(void Point.setY(int)));

after(FigureElement fe) returning: move(fe) {
Display.update(fe);

}
}

class Line {
private Point p1, p2;
Point getP1() { return p1; }
Point getP2() { return p2; }
void setP1(Point p1) {

this.p1 = p1;
}
void setP2(Point p2) {

this.p2 = p2;
}

}

class Point {
private int x = 0, y = 0;
int getX() { return x; }
int getY() { return y; }
void setX(int x) {    

this.x = x;
}
void setY(int y) {    

this.y = y;
}

} Example taken from the AspectJ Tutorial
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I chose this alternative in order to be as 
compatible as possible with the Eclipse 
ideas

I chose this alternative in order to be as 
compatible as possible with the Eclipse 
ideas

Design Alternatives

Recompile the complete system with AspectJ (ajc)
– to weave an aspect into the whole system

Weave the complete system once at startup-time
– using the -injar option of AspectJ

Weave (and re-weave) classes when necessary
– using load-time bytecode weaving
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Solution: A load-time weaving runtime

The basic idea:

Let the Eclipse runtime weave aspects into plugins at 
load-time
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Implementation
- load-time weaving -
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Implementation
- aspect contribution -

Load-time weaving within the Eclipse runtime:
– Weaving runtime needs to know all aspects that should be 

woven into
– Solution:

• Weaver plugin provides an extension point for aspects
• Plugins can contribute aspects via extensions

<extension
id="monitorruntime"
name="monitorruntime"
point="org.aspectj.weavingruntime.aspects">

<aspect
class="com.ibm.eclipse.monitor.aspect.MonitorAspect">

</aspect>
</extension>

<extension
id="monitorruntime"
name="monitorruntime"
point="org.aspectj.weavingruntime.aspects">

<aspect
class="com.ibm.eclipse.monitor.aspect.MonitorAspect">

</aspect>
</extension>
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Implementation
- weaving inside the runtime -

Problem:
– load-time weaving has to happen at class-loading time

Solution:
– inject load-time bytecode modification into the Eclipse runtime

Eclipse Platform

runtime

AspectJ 1.1 bytecode weaving 
implementation on a per class base

AspectJ 1.1 bytecode weaving 
implementation on a per class base

...
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Implementation
- reusing weaver API from AspectJ -

Bytecode weaving plugin uses the weaver API from the 
AspectJ 1.1 implementation
– No additional effort to implement aspect weaving
– All improvements of AspectJ 1.2 can be re-used directly
– Complete AspectJ language can be used
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Hooking into the runtime

Eclipse 2.1.x:
– Modification of original runtime plugins needed
– But still a fully compatible runtime

Eclipse 3.0:
– New OSGi-based runtime is a lot more flexible for this kind of 

extensions
– Load-time bytecode modification can be implemented in separate 

plugin (via a specialized OSGi framework adaptor)
– DynamicImport-Feature can be used to handle additional 

dependencies between plugins
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Demo

Using the Eclipse IDE 3.0 itself as the application enhanced via
aspects

With special thanks to Chris Laffra
for the Monitor plugin
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More Use Cases
- within and beyond the Eclipse RCP -

Analyzing - e.g.:
– Find out where objects of a specific type are created
– Find out where they are created depending on a specific control 

flow

Enhancing - e.g.:
– Do something every time a plugin is started, maybe depending 

on the control flow

Modifying external libraries - e.g.:
– Replace calls to the system class loader with calls to the class

loader of the plugin

. . .



Demo at AOSD 2004

Status of Work

Implementation available for
– Eclipse 2.1.2
– 3.0M4 (old runtime)
– 3.0M8 (new OSGi-based runtime)

Features
– Open Source
– Load-time weaving for AspectJ 1.1 (and upcoming 1.2)
– Caching for woven classes (to improve startup time)

Availability
– More information: www.martinlippert.com
– If you are interested, please contact me: lippert@acm.org
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The Next Steps

Improvements
– Performance
– Footprint
– Code refactorings

Dynamic Plugins
– New runtime features install/update/uninstall of plugins at 

runtime
– What happens to aspects being installed/updated/uninstalled?
– Solution: “run-time like” weaving for AspectJ

Debugging
– debugging within the PDE
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Thank you for your attention !!!

- Questions highly welcome -

Special thanks to the Eclipse Runtime Team and the AspectJ-
Team for their help and assistance implementing the prototype

Martin Lippert
lippert@acm.org

www.martinlippert.com


