
An AspectJ-enabled Eclipse Runtime Engine
- Demonstration at AOSD 04 -

Martin Lippert
lippert@acm.org
www.martinlippert.com

Demo at AOSD 2004

Motivation

Use Eclipse 3.0 RCP to develop enterprise applications
Use AspectJ to improve modularity

What happens if we want to use both techniques to
develop applications?
– Especially to modularize cross-plugin pointcuts

Demo at AOSD 2004

PLUGIN A
PLUGIN A

PL
UG

IN
 B

PL
UG

IN
 B

PLUGIN CPLUGIN C

Example

aspect DisplayUpdating {
pointcut move(FigureElement figElt):

target(figElt) &&
(call(void FigureElement.moveBy(int, int) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)));

after(FigureElement fe) returning: move(fe) {
Display.update(fe);

}
}

class Line {
private Point p1, p2;
Point getP1() { return p1; }
Point getP2() { return p2; }
void setP1(Point p1) {

this.p1 = p1;
}
void setP2(Point p2) {

this.p2 = p2;
}

}

class Point {
private int x = 0, y = 0;
int getX() { return x; }
int getY() { return y; }
void setX(int x) {

this.x = x;
}
void setY(int y) {

this.y = y;
}

} Example taken from the AspectJ Tutorial

Demo at AOSD 2004

I chose this alternative in order to be as
compatible as possible with the Eclipse
ideas

I chose this alternative in order to be as
compatible as possible with the Eclipse
ideas

Design Alternatives

Recompile the complete system with AspectJ (ajc)
– to weave an aspect into the whole system

Weave the complete system once at startup-time
– using the -injar option of AspectJ

Weave (and re-weave) classes when necessary
– using load-time bytecode weaving

Demo at AOSD 2004

Solution: A load-time weaving runtime

The basic idea:

Let the Eclipse runtime weave aspects into plugins at
load-time

Demo at AOSD 2004

Implementation
- load-time weaving -

classA.javaclassA.java

aspect1.ajaspect1.aj

aspect2.ajaspect2.aj

classB.javaclassB.java classC.javaclassC.java

ajc (compile
& weave)

ajc (compile
& weave)

woven
bytecode
woven

bytecode

Java VM
runs the
system

Java VM
runs the
system

compile time weaving

classA.javaclassA.java

aspect1.ajaspect1.aj

aspect2.ajaspect2.aj

classB.javaclassB.java

classC.javaclassC.java

ajc (compile
only)

ajc (compile
only)

compiled
bytecode
compiled
bytecode

Java VM
with Eclipse

runtime
weaves

each single
class at

load-time

Java VM
with Eclipse

runtime
weaves

each single
class at

load-time

load time weaving

compiled
bytecode
compiled
bytecode

javacjavac

Demo at AOSD 2004

Implementation
- aspect contribution -

Load-time weaving within the Eclipse runtime:
– Weaving runtime needs to know all aspects that should be

woven into
– Solution:

• Weaver plugin provides an extension point for aspects
• Plugins can contribute aspects via extensions

<extension
id="monitorruntime"
name="monitorruntime"
point="org.aspectj.weavingruntime.aspects">

<aspect
class="com.ibm.eclipse.monitor.aspect.MonitorAspect">

</aspect>
</extension>

<extension
id="monitorruntime"
name="monitorruntime"
point="org.aspectj.weavingruntime.aspects">

<aspect
class="com.ibm.eclipse.monitor.aspect.MonitorAspect">

</aspect>
</extension>

Demo at AOSD 2004

Implementation
- weaving inside the runtime -

Problem:
– load-time weaving has to happen at class-loading time

Solution:
– inject load-time bytecode modification into the Eclipse runtime

Eclipse Platform

runtime

AspectJ 1.1 bytecode weaving
implementation on a per class base

AspectJ 1.1 bytecode weaving
implementation on a per class base

...

Demo at AOSD 2004

Implementation
- reusing weaver API from AspectJ -

Bytecode weaving plugin uses the weaver API from the
AspectJ 1.1 implementation
– No additional effort to implement aspect weaving
– All improvements of AspectJ 1.2 can be re-used directly
– Complete AspectJ language can be used

Demo at AOSD 2004

Hooking into the runtime

Eclipse 2.1.x:
– Modification of original runtime plugins needed
– But still a fully compatible runtime

Eclipse 3.0:
– New OSGi-based runtime is a lot more flexible for this kind of

extensions
– Load-time bytecode modification can be implemented in separate

plugin (via a specialized OSGi framework adaptor)
– DynamicImport-Feature can be used to handle additional

dependencies between plugins

Demo at AOSD 2004

Demo

Using the Eclipse IDE 3.0 itself as the application enhanced via
aspects

With special thanks to Chris Laffra
for the Monitor plugin

Demo at AOSD 2004

More Use Cases
- within and beyond the Eclipse RCP -

Analyzing - e.g.:
– Find out where objects of a specific type are created
– Find out where they are created depending on a specific control

flow

Enhancing - e.g.:
– Do something every time a plugin is started, maybe depending

on the control flow

Modifying external libraries - e.g.:
– Replace calls to the system class loader with calls to the class

loader of the plugin

. . .

Demo at AOSD 2004

Status of Work

Implementation available for
– Eclipse 2.1.2
– 3.0M4 (old runtime)
– 3.0M8 (new OSGi-based runtime)

Features
– Open Source
– Load-time weaving for AspectJ 1.1 (and upcoming 1.2)
– Caching for woven classes (to improve startup time)

Availability
– More information: www.martinlippert.com
– If you are interested, please contact me: lippert@acm.org

Demo at AOSD 2004

The Next Steps

Improvements
– Performance
– Footprint
– Code refactorings

Dynamic Plugins
– New runtime features install/update/uninstall of plugins at

runtime
– What happens to aspects being installed/updated/uninstalled?
– Solution: “run-time like” weaving for AspectJ

Debugging
– debugging within the PDE

Demo at AOSD 2004

Thank you for your attention !!!

- Questions highly welcome -

Special thanks to the Eclipse Runtime Team and the AspectJ-
Team for their help and assistance implementing the prototype

Martin Lippert
lippert@acm.org

www.martinlippert.com

