
AJEER:
Load-Time Aspect Weaving
 for the Eclipse Platform

The Vision:
 Using Eclipse Plugins and AspectJ Together

 The Problem:
Separate Compilation vs. Aspect Weaving

Eclipse Plugin Technology

> Build IDEs and business applications
 as a set of plugins

> Plugins are compiled separately
 as independent units with defined
 dependencies

> Plugins can be installed and uninstalled
 from a system without recompiling
 the rest of the system

> Plugins offer a component level
 above packages, but they do not provide
 any new language modularization
 mechanisms

AspectJ and AJDT

The Challenge: Dynamic Plugins and Aspects

> OSGi-based runtime allows plugins to be (un-)installed at runtime
> What happens if aspect-promoting plugins are (un-)installed at runtime???

Possible solution:
> AJEER has to take care to update active plugins at runtime
 (update mechanism of OSGi kernel)
> Therefore, AJEER needs to keep track of aspect dependencies and possible
 targets of aspects

The Solution:
AJEER: An AspectJ-Enabled Eclipse Runtime

 Features weaving of AspectJ aspects into existing plugins at class-loading
 time (including dependency management)

-> Standard Eclipse plugins can add new aspects to the system via a new
 extension point (aspect-promotion)
-> Already existing or new plugins do not need to be recompiled
-> Separate compilation for plugins still possible

-> Open issues: performance and footprint of the weaving process
 (but weaving performance improves and AJEER implements caching
 of woven plugins)

Example 1: The Eclipse Monitor

Example 2: The Zipper System for
Replicated Application Sharing

Example 3: Parallax

Enabling programmers to combine Eclipse plugin technology and AspectJ
Martin Lippert (lippert@acm.org) - Download: http://www.martinlippert.org/

> MDA Eclipse Support for
 Addressing Middleware-Specific Crosscutting Concerns
 Based on Aspect-Promoting Plug-ins

 http://parallax-lgl.epfl.ch/
 Raul Silaghi [rsilaghi@acm.org]
 Software Engineering Laboratory
 Swiss Federal Institute of Technology in Lausanne (EPFL)

> Replicated Application Sharing for Eclipse
 - currently works with text-based editors
 - GEF in progress
> Uses Aspects for catching events, code
 archaeology (which events to catch?), and
 missing API workarounds

 http://www.research.ibm.com/zipper
 Steven Rohall
 IBM T.J.Watson Research Center

> AJEER-based reimplementation
 of Chris Laffra's Eclipse-Monitor

> Shows the internal behavior of
 Eclipse (method calls, object creations, plugin
 communication)

Get a Demo!Just ask for it !!!

> AspectJ offers a language extension for
 Java to modularize concerns with aspect-
 oriented techniques

> Great IDE support via AJDT

> Aspects serve as a new modularization
 unit orthogonal to classes, but the
 AspectJ compiler produces Java-
 compliant bytecode

> The current AspectJ implementation
 needs to recompile (or at least reweave)
 all targets that might be affected by the
 aspects in the system

> Modularize cross-plugin concerns into separate plugins
> Build aspects into a platform to let other plugins follow the rules

Just let developers combine the benefits from both worlds without limitations!!!

> AspectJ needs to weave the system to let aspects work correctly
> You would need to recompile the whole system when new aspects come in, old aspects are
 deleted or existing aspects change
> You would not be able to plug in new pluings into an existing system without recompilation

This cuts off major features of the Eclipse plugin technology

